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Orbifolds play a prominent role in theories with extra dimensions due to their property
to create chirality in the massless sector, an indispensable property in any phenomeno-
logically relevant theory. Another interesting feature of orbifolds is their ability to break
symmetries, in particular gauge and supersymmetry. While local symmetries remain in-
tact in the bulk by an appropriate choice of parities for the transformation parameters,
they are in general broken to smaller subgroups on the boundaries (the fixed points of
the orbifold symmetry). As in any quantum field theory, in the effective action we must
allow for all operators consistent with the symmetries. Allowed operators not present at
tree level will be generated by radiative corrections [1–3].

The orbifold breaking of the bulk gauge symmetry proceeds by projecting out some
fields, i.e. only a subset of the 4D gauge bosons Aµ and the 4D scalars Ai (i = 5, · · · , D)
will be non-vanishing at the boundaries. While these Aµ generate the unbroken gauge
group H, the Ai transform in some representation of H. It is then necessary to determine
how the symmetries restrict possible brane localized operators of those fields, especially
possible mass terms for the scalars [3]. Would H be the only symmetry left on the brane,
mass terms for Ai would be perfectly allowed leading to a quadratic sensitivity to the UV
cut-off.

In this talk we demonstrate that the remnant symmetry on the brane is larger than
the H gauge symmetry left over from the bulk. This provides a further restriction on the
possible brane terms. We find that brane mass terms for scalars can only occur in D ≥ 6
and only for U(1) factors in H that were not already present in the bulk gauge group G.
These brane mass terms are radiatively generated by bulk fermions.

We will consider a gauge theory (gauge group G) coupled to fermions in D > 4
dimensional space-time parametrized by coordinates xM = xµ, yi where µ = 0, 1, 2, 3 and
i = 5, · · · , D. The bulk Lagrangian is

LD = −1

4
FA

MNF
AMN + iΨγMDMΨ, (1)

where FA
MN = ∂MA

A
N − ∂NAA

M − g fABCAB
MA

C
N with the indices A,B,C running over

the adjoint representation of G and fABC being the G structure constants. The local
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symmetry of (1) is the invariance under the (infinitesimal) gauge transformations

δGAA
M =

1

g
DAB

M ξ
B =

1

g
∂Mξ

A − fABCξBAC
M . (2)

We now compactify the p ≡ D − 4 extra dimensions on the T p/Z2 orbifold with all the
radii of the torus equal to R 1 and with the Z2 action defined as yi → −yi.

In the compactified theory the surviving gauge symmetry on the boundaries of the
orbifold is a subgroup H of G, according to the action of Z2 on the gauge fields

A(xµ,−yi) = PAA(xµ, yi), PA = Λ ⊗ P1. (3)

Here P1 acts on the vector indices and it is the diagonal matrix with eigenvalues αµ =
+1, αi = −1. Λ acts on the gauge indices and can also be taken diagonal. Its eigenvalues
ηA = ±1 then define the breaking pattern. We split the bulk gauge index as A =
a, â corresponding to the unbroken (ηa = +1) and the broken generators (ηâ = −1)
respectively. The nonzero fields on the brane are the even fields, namely Aa

µ and Aâ
i , while

Aâ
µ and Aa

i are odd and thus vanish on the brane. The orbifold consistency constraint on
the structure constants comes essentially from the invariance of (1) and it provides the
automorphism condition [4]

ηAηBηC = 1, for fABC 
= 0. (4)

Finally, in the gauge sector, the Faddeev-Popov ghosts c transform as the µ-components
of the gauge fields, and for them the parity action is Pc = Λ.

There are restrictions on the fermion representations as well. In even dimensions the
bulk fermion representation has to be chosen anomaly free. Furthermore, for any number
of extra dimensions, the resulting four dimensional massless fermion spectrum must also
be anomaly free. In addition, there are orbifold consistency conditions analogous to (4).
The Z2 action on the fermions is

Ψ(xµ,−yi) = PΨΨ(xµ, yi), PΨ = λ⊗ P 1
2

(5)

where λ is a matrix acting on the representation indices. The constraint comes from
the requirement that the coupling iAA

MΨγMTAΨ is Z2 invariant. One obtains [3] for any
number of dimensions 2

[λ, T a] = 0 {λ, T â} = 0. (6)

P 1
2

is the orbifold action on the spinor indices and will be given explicitly later on.
The non-vanishing fields on the branes are of the general form

D∏
i=5

∂ni
i Φ|brane ≡ ∂nΦ (7)

where n ≡ ∑
i ni is even (odd) for even (odd) fields. Similarly, the gauge parameters ξa

are even fields and ξâ are odd. They couple to the branes according to (7).

1From now on we will work in units where R ≡ 1. Restoring the R dependence as well as introducing
different radii Ri for different dimensions should be straightforward.

2Note that conditions (6) determine λ up to a sign.
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The effective four dimensional Lagrangian can be written as

Leff
4 =

∫
dpy

[LD + Lbrane
4

∏
i

{
δ(yi) + δ(yi − π)}]

(8)

where LD is given by (1) and Lbrane
4 should be the most general Lagrangian consistent with

the symmetries. The latter can be nothing but the original bulk symmetry (2) modded
out by the orbifold action and subsequently evaluated at the location of the brane. Let us
call the transformation resulting from this operation δξ. Applying this rule to (2) acting
on the massless even fields, one obtains the transformations

δξ(A
a
µ) =

1

g
∂µξ

a − fabcξbAc
µ, (9)

δξ(A
â
i ) =

1

g
∂iξ

â − f âbĉξbAĉ
i . (10)

In the above equations and in what follows, all fields should be interpreted as coupled to
the brane in (8) according to (7).

The brane symmetry is however much larger than the transformations (9) and (10).
In fact, there is an infinite number of non-zero independent fields on the brane, i.e.
∂2k{Aa

µ, A
â
i } and ∂2k+1{Aâ

µ, A
a
i }, and an infinite number of corresponding transformation

parameters {∂2kξa} and {∂2k+1ξâ} induced by the bulk. Using (2), one can derive the
transformation of any non-zero brane field. We show explicitly only the first two at the
next level:

δξ(∂jA
a
i ) =

1

g
∂j(∂iξ

a) − fab̂ĉ(∂jξ
b̂)Aĉ

i − fabcξb(∂jA
c
i), (11)

δξ(∂iA
â
µ) =

1

g
∂µ(∂iξ

â) − f âb̂c(∂iξ
b̂)Ac

µ − f âbĉξb(∂iA
ĉ
µ). (12)

It is convenient to separate the above transformations into two different classes:

δξ = δH + δK with δH = {ξa}, δK = {∂2kξa, ∂2k+1ξâ}. (13)

This is a natural separation because δH is the surviving gauge transformation on the brane
reflecting its H gauge invariance. One can see immediately by inspection of Eqs. (9)−(12)
that Aa

µ are the gauge bosons of H while all other fields transform homogeneously in either

the adjoint of H, (T a)bc = ifabc, or in the representation spanned by (T a)b̂ĉ = ifab̂ĉ 3.
The rest of the transformations is a set of local (but not gauge) transformations which
we named δK.

Once the symmetries under which the brane action should be invariant are known, one
can start constructing the allowed terms by these symmetries. A useful guiding principle
in this task is the gauge symmetry H. We know that it is a necessary condition that
the building blocks should be H−covariant combinations of the fields since this (and only
this) can ensure that the square of these covariant objects are δH−invariant. Given a set

3As a simple example consider the breaking SU(3)→ SU(2)⊗U(1). The adjoint of SU(3), fABC = 8
then splits into the SU(2) representations fabc = 3⊕1 (H is not simple and hence its adjoint is reducible)
and fab̂ĉ = 2⊕ 2.
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of H−covariant objects, invariance under δK is a sufficient condition for their square to
be invariant under both δH and δK and therefore to be an allowed terms in the effective
action. The reason for which we required K−invariance is because there is no notion of
K−covariance, since K is not a gauge symmetry. Thus, even though at this point we have
not proved that K−invariance is not only a sufficient but also a necessary condition, we
will enforce it.

A simple and very important example is the field Aâ
i . By looking at (10) one can see

that this field is indeed δH−covariant but not δK−invariant. A naive interpretation would
then be that an explicit brane mass term as (Aâ

iMâb̂A
b̂
j) is forbidden in the four dimensional

effective action. However, as we will see below, under particular circumstances such a term
can be part of a δH− and δK−invariant term in the Lagrangian in which case such a term
can be generated radiatively.

The terms which are at the same time H−covariant and K−invariant are easily found
from the transformation properties:

δHF a
µν = −fabcξbF c

µν , δKF a
µν = 0 (14)

δHF â
iµ = −f âbĉξbF ĉ

iµ, δKF â
iµ = 0 (15)

δHF a
ij = −fabcξbF c

ij, δKF a
ij = 0. (16)

Note the different structure of F a
µν ≡ ∂µAa

ν − ∂νAa
µ − gfabcAb

µA
c
ν and F a

ij ≡ ∂iAa
j − ∂jAa

i −
gfab̂ĉAb̂

iA
ĉ
j in the nonlinear terms. Further terms could be constructed from covariant

derivatives of these operators. At the renormalizable level the following terms can appear
in the Lagrangian:

Lbrane
4 = −1

4
ZabF

a
µνF

b µν − 1

4
Z ij

âĉF
â
iµF

ĉ µ
j − 1

4
Z ijkl

ab F
a
ijF

b
kl +Z ij

α F
α
ij +Zklij

α DαA
k D

AB
l F

B
ij . (17)

where the Z tensors in extra-dimensional indices must be proportional to either the torus
metric gij or to possible invariant tensors under the symmetry group of the torus. We
differentiate in the last two terms of (17) possible U(1) factors of H from the remaining
semi-simple part and denote these U(1) generators by T α. In fact Eq. (16) implies that
the field strength of a U(1) gauge field is invariant by itself allowing for the term 4

F α
ij = ∂[iA

α
j] − gfαb̂ĉAb̂

iA
ĉ
j . (18)

that can give rise to a quadratic renormalization. In a similar way, the term DαA
k D

AB
l F

B
ij

is invariant allowing for the last term in (17). It is dimension four and gives rise to a
logarithmic renormalization, as we will see.

One might think that the term tr(λRT
a
R)F a

ij , where λR satisfies Eqs. (6) and the index
R denotes some arbitrary irreducible representation, would give a further invariant linear
in Fij . However, for T a

R belonging to a simple factor of H, λR must act as the identity in
this subspace by Eqs. (6) and Schur’s Lemma, so the trace vanishes. Only U(1) factors
will thus contribute to the trace and we do not get any new invariant. We conclude that
the terms F α

ij are the most general linear terms.

4Notice that unbroken U(1) factors in G do not give rise in (18) to bilinear terms in even fields.
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We will be concerned mainly with the appearance of scalar mass terms in Lbrane
4 . For a

general unbroken gauge group H the most general renormalizable Lagrangian allowed by
the symmetries of the theory contains the terms in (17). The first term in (17) corresponds
to kinetic terms for the four dimensional gauge bosons, the second one corresponds to
kinetic terms for the even scalars (plus some interactions), while the third term contains
brane mass terms for the odd scalars. One consequence of the appearance of brane mass
terms in this particular way is that their renormalization is expected to be governed by
the (wave function) renormalization of F 2, which does not contain quadratic divergences.
They are expected to pick up only logarithmically divergent renormalization effects. Brane
mass terms for even scalars can appear in Lbrane

4 in the case where there are U(1) group
factors in H corresponding to unbroken generators T α. Under this circumstance we have
seen that the operator (18) is allowed by all symmetries on the brane and we expect that
both a tadpole for the derivative of odd fields, ∂iA

α
j , and a mass term for the even fields,

fαb̂ĉAb̂
iA

ĉ
j , will be generated on the brane by bulk radiative corrections. Moreover, since

these operators have dimension two, we expect that their respective renormalizations will
lead to quadratic divergences, making the theory ultraviolet sensitive.

We would like to confirm by explicit calculation that the allowed terms are indeed
generated radiatively on the brane. In particular, mass terms for brane scalars (extra
dimensional components of gauge bosons) are contained in the third term of (17) for the
odd scalars Aa

i , and in (18) for the even scalars Aâ
i when there are U(1) group factors in H.

In all cases they arise from effective operators proportional to Fij . An important special
case is D = 5, i.e. a five dimensional gauge theory compactified on S1/Z2. In this case the
term Fij does not exist and therefore we do not expect any type of brane mass terms to
appear in Lbrane

4 . This result has been confirmed by explicit one loop calculation in Ref. [3].
However for D > 5 Fij does exist and we expect, from the previous symmetry arguments,
the corresponding mass terms to be generated on the brane by radiative corrections. We
will now compute these mass terms in a D = 6 model compactified on the orbifold T 2/Z2.
The contribution of a chiral fermion Ψ± turns out to be

ig tr
(
λRT

B
R

)
εijm

j

∫
d4q

(2π)4
1

q2 − %m2/2
, m5, m6 even, (19)

where the external leg corresponds to the 4D scalar AB
i (we have defined ε56 = −ε65 = +1).

It leads to the brane terms (We have confirmed explicitly that the terms fαâb̂Aâ
iA

b̂
j in (18)

receive the same renormalization Z ij
α at one loop as the tadpole)

(Z ij
α F

α
ij + Zklij

α DαA
k D

AB
l F

B
ij

)
[δ(y5) + δ(y5 − π)] [δ(y6) + δ(y6 − π)] , (20)

where α runs over the different U(1) factors of H and Z ij
α and Zklij

α are given by

Z ij
α = εij

g

32π2
ζα Λ2, ζα = tr (λRT

α
R) , (21)

Zklij
α = δkl εij

g

32π2
ζα log

Λ

µ
, (22)

where Λ is the ultraviolet and µ the infrared cut-off.
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A further comment concerns the gauge contribution to the tadpole. Each graph is
proportional to the trace

tr
(
λAdjT

α
Adj

)
= ηAδABfαAB = 0 (23)

and thus vanishes by the asymmetry of the structure constants. Note that this is a generic
feature of real representations.

We have also computed the one loop contribution to the terms (F a
ij)

2 in (17) and we
found the logarithmic divergence we anticipated:

−1

4
F a

ijZ ijkl
ab F

b
kl [δ(y5) + δ(y5 − π)] [δ(y6) + δ(y6 − π)] , (24)

where

Z ijkl
ab = δikδjl

g2

2π2

(
C2(Ha) − 1

2
C2(G)

)
δab log

Λ

µ
. (25)

Here, C2(Ha) is by definition the Casimir of the group factor in H to which the generator
T a belongs (we define it to be zero for U(1) factors). One expects a corresponding
logarithmic contribution from the fermion sector.
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