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It is widely accepted that the effects of supersymmetry breaking appear as soft su-
persymmetry breaking (SSB) terms. However, renormalizability allows to introduce
more than 100 new parameters into the minimal supersymmetric standard model
(MSSM). The problem is not only this large number of the independent parameters,
but also the fact that the SSB terms induce large flavor-changing neutral current
(FCNC) processes and CP-violating phases, which are severely constrained by pre-
cision experiments [1, 2, 3, 4, 5]. Therefore, the huge degrees of freedom involved in
the soft-supersymmetry breaking (SSB) parameters have to be highly constrained in
all viable supersymmetric models. This has been called the supersymmetric flavor
problem. To overcome this problem, several ideas of SUSY breaking and its medi-
ation mechanisms have been proposed; gauge mediation [6], anomaly mediation [7],
gaugino mediation [8] and so on. The common feature behind these ideas is that the
leading parts of the SSB parameters are given by flavor-blind radiative corrections.
It is noted that the anomaly mediation and the gaugino mediation work on the as-
sumption that the tree-level contributions for the SSB parameters at a fundamental
scale MPL are sufficiently suppressed, e.g., by sequestering of branes for the visible
sector and the hidden SSB sector, since there is no reason for these terms to be
flavor universal. However, it has been argued recently [9] that such a sequestering
mechanism cannot be simply realized in generic supergravity or superstring inspired
models. An interesting way out from this problem is to suppress the tree-level con-
tributions by certain field theoretical dynamics. There have been indeed several
attempts along the line of thought, in which use has been made [10, 11, 12] that the
SSB parameters are suppressed in the infrared limit in approximate superconformal
field theories [13].

In [14], we proposed another possibility in more than four dimensions that flavor-
blind radiative corrections are much more dominant than any other flavor non-
universal contributions. At this meeting we would like to present our idea and
results. The mechanism that we propose implements the power-law running of
couplings [15, 16] in supersymmetric field theories with δ extra compactified dimen-
sions and at the same time the infrared attractiveness of the SSB parameters [17].
We consider the simplest case in which only the non-Abelian gauge supermultiplet
propagates in the (4 + δ)-dimensional bulk and the supermultiplets containing the
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matter and Higgs fields are localized at our 3-brane [16, 18, 19]. In this mecha-
nism the gaugino mass M , which is assumed to be generated at the fundamental
scale MPL by some SUSY breaking mechanism, receives a correction proportional to
(MPL/MGUT)δ at the grand unification scale MGUT, and more importantly induces
dominant flavor-blind corrections to other SSB parameters. The most interesting
finding is that the squared soft-scalar masses (m2)i

j and the soft-trilinear couplings
hijk become so aligned at MGUT that FCNC processes and dangerous CP-violating
phases are sufficiently suppressed. In this class of models, all the A-parameters h’s,
B-parameter BH and soft-scalar masses m2’s in the minimal supersymmetric stan-
dard model (MSSM) are basically fixed as functions of the unified gaugino mass
M and the µ-parameter µH , up to corrections coming from Yukawa interactions.
Therefore, this class of models can not only overcome the supersymmetric flavor
problem, but also have a large predictive power. Moreover, no charged sparticles
become tachyonic in these models.

Let us be more specific. As mentioned, we assume that the (4 + δ)-dimensional
gauge supermultiplet propagates in the bulk, and all the N = 1 chiral supermulti-
plets Φi = (φi, ψi) containing matters and Higgses propagate only in four dimen-
sions. The gauge supermultiplet contains a chiral supermultiplet Γ in the adjoint
representation, where we assume that δ is equal to one or two. We assign an odd
parity to Γ so that it does not contain zero modes [16, 19], and do not have any
interactions with Φ’s. To simplify the situation we further assume that each extra
dimension is compactified on a circle with the same radius R. The size of R is model
dependent, but throughout this paper we assume that MGUT = 1/R. With these
assumptions, the boundary superpotential has a generic form

W (Φ) =
1

6
Y ijkΦiΦjΦk +

1

2
µijΦiΦj , (1)

and that the SSB Lagrangian LSSB can be written as

−LSSB =

(
1

6
hijkφiφjφk +

1

2
Bijφiφj +

1

2

∑
n=0

Mλnλn + h.c.

)
+ φ∗j(m2)i

jφi, (2)

where λn’s are the Kaluza-Klein modes of the gaugino, and we have assumed a
unique gaugino mass M for all λ’s.

We consider the renormalization group (RG) running of the parameters between
the fundamental scale MPL = MPlanck/

√
8π � 2.4 × 1018 GeV and MGUT. To see

the gross behavior of the RG running, we first consider the contributions coming
from only the gauge supermultiplet, because it is the only source responsible for the
power-law running [15, 16] of the parameters under the assumptions specified above.
In the flavor bases in which couplings of the gauginos are diagonal, only diagonal
elements of the anomalous dimensions can contribute. We find the following set of
the one-loop β functions in this approximation [16, 20]:

Λ
dg

dΛ
= = − 2

16π2
C(G)G2

δg , Λ
dM

dΛ
= − 4

16π2
C(G)G2

δM, (3)
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Λ
dY ijk

dΛ
= − 2

16π2
(C(i) + C(j) + C(k))G2

δY
ijk, (4)

Λ
dµij

dΛ
= − 2

16π2
(C(i) + C(j))G2

δ µ
ij, (5)

Λ
dBij

dΛ
=

2

16π2
(C(i) + C(j))G2

δ(2Mµ
ij − Bij), (6)

Λ
dhijk

dΛ
=

2

16π2
(C(i) + C(j) + C(k))G2

δ(2MY
ijk − hijk), (7)

Λ
d(m2)i

j

dΛ
= − 8

16π2
C(i)δi

jG
2
δ|M |2, (8)

where Gδ = gX
1/2
δ (RΛ)δ/2, and Xδ = πδ/2Γ−1(1 + δ/2) = 2(π) for δ = 1(2) [16] 2

The gauge coupling is denoted by g, and C(G) stands for the quadratic Casimir
of the adjoint representation of the gauge group G, and C(i) for that of the repre-
sentation Ri. It is easy to show that the evolution of Y ijk, µij and M are related to
that of g as

M(MGUT) =

(
g(MGUT)

g(MPL)

)2

M(MPL) , Y ijk(MGUT) =

(
g(MGUT)

g(MPL)

)ηijk
Y

Y ijk(MPL),(9)

µij(MGUT) =

(
g(MGUT)

g(MPL)

)ηij
µ

µij(MPL), (10)

where

ηijk
Y =

C(i) + C(j) + C(k)

C(G)
, ηij

µ =
C(i) + C(j)

C(G)
. (11)

Therefore, these parameters can become very large if g(MPL)/g(MGUT) is large. A
rough estimate shows that

g(MGUT

g(MPL)
�

[
C(G)XδαGUT

πδ

]1/2 (
MPL

MGUT

)δ/2

� 3.5(32) for δ = 1(2), (12)

where we have used αGUT = 0.04, MPL/MGUT = 102, G = SU(5) to obtain the
concrete numbers. These numbers should be compared with 1.3 in the corresponding
four-dimensional case [17].

In contrast to g, Y ijk, µij, M , the SSB parameters Bij , hijk and (m2)i
j have a

completely different behavior. We find that the ratios of the SSB parameters to the
gaugino mass M approach to their infrared attractive fixed points:

Bij/Mµij → −ηij
µ , h

ijk/MY ijk → −ηijk
Y , (m2)i

j/|M |2 → C(i)

C(G)
δi
j , (13)

2Xδ is regularization scheme dependent. See [21] for a detailed analysis on the regularization
dependence.
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where η’s are defined in (11). Note that so far no assumption on the reality of the
SSB parameters has been made, and we recall that the phase of M and µij can
always be rotated away by a phase rotation that correspond to the R-symmetry
and an appropriate rotation of the chiral superfields Φ, respectively. So, after these
rotations, all the phases of M and µij are transferred to those of Y ijk, hijk, Bij and
(m2)i

j. Therefore, we may assume without loss of generality that M and µij are
real. We see from (13) that the low-energy structure is completely fixed by the
group theoretic structure of the model. Furthermore, since hijk and (m2)i

j become
aligned in the infrared limit, i.e., hijk ∝ Y ijk and (m2)i

j ∝ δi
j , the infrared forms (13)

give desired initial values of the parameters at MGUT to suppress FCNC processes
in the MSSM, and they predict that the only CP-violating phase is the usual CKM
phase 3.

One can easily estimate how much of a disorder in the initial values at MPL can
survive at MGUT. Suppose that there exists an O(1) disorder in (m2)i

j/|M |2. Using
the β functions (3) and (8), we find the deviation from (13) to be(

g(MPL)

g(MGUT)

)4 [(m2)i
j

|M |2 (MPL) − C(i)

C(G)
δi
j

]
. (14)

Then inserting the value of g(MPL)/g(MGUT) given in (12), we find that an O(1)
disorder at MPL becomes a disorder of O(10−2) and O(10−6) at MGUT for δ = 1 and
2, respectively. Note that the off-diagonal elements of (m2)i

j as well as the differences

among the diagonal elements ∆m2(i, j) = (m2)i
i − (m2)j

j (if C(i) = C(j)) belong to
the disorder. However, their contributions to (δij)LL,RR of [5] are less than O(10−6)
for δ = 2, and therefore the most stringent constraints coming from the KS −KL

mass difference ∆mK and the decay µ → eγ are satisfied [5]. In the case of five
dimensions (δ = 1) the suppression of the disorder will be sufficient, if the gauginos
are much heavier than the sfermions [5]. [If we use MPL/MGUT ∼ 103, then the
suppression is much improved.]

Similarly, using (3) and (7), we obtain the deviation for the tri-linear couplings
from (13) as (

g(MPL)

g(MGUT)

)2 [
hijk

MY ijk
(MPL) + ηijk

Y (MPL)

]
, (15)

where use has been made of (9). Suppose the tri-linear couplings to be order of
MY ijk at MPL. Then we find that

∣∣∣∣∣ h
ijk

MY ijk
(MGUT) + ηijk

Y

∣∣∣∣∣ <∼
(
g(MPL)

g(MGUT)

)2+ηijk
Y

. (16)

Note that the phases of hijk/MY ijk are also suppressed. In the case of G = SU(5),
ηijk

Y = 48/25(42/25) for the up (down) type Yukawa couplings. Using (12) again,

3Eq. (13) means that the phases of (h/MY ) and (B/Mµ) that cannot be rotated away approach
zero in the exact infrared limit.
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Figure 1: Infrared attractiveness of m2
5/|M |2 and m2

10/|M |2. The dashed (solid)
lines correspond to the third (first two) generation(s). m2

101,2/|M |2 > m2
103/|M |2 >

m2
51,2/|M |2 � m2

53/|M |2 at Λ = MGUT.

we find that the right-hand side of (16) is ∼ 10−2(6) for δ = 1(2). This disorder
contributes, for instance, to Im(δii)LR as well as Re(δij)LR of [5]. Therefore our
suppression mechanism can satisfy the most stringent constraints coming from the
electric dipole moments (EDM) of the neutron and the electron and also from ε′/ε
in the K0 − K̄0 mixing [5]. Similarly the phases of the B-parameters, Bij/Mµij are
also suppressed.

In concrete examples, there will be logarithmic corrections to (13) to which
the Yukawa couplings Y ijk non-trivially contribute. How much the logarithmic
corrections can amplify the disorder will be model-dependent. In [14] we performed
detailed analyses on the logarithmic corrections in a GUT model based on SU(5).
Fig. 1, which is one of the main results of [14], shows the evolution of m2

5/|M |2 and
m2

10/|M |2, respectively, in an obvious notation. The dashed lines correspond to the
third generation. The differences ∆m2

10(i, 3)/|M |2 = |m2
10i−m2

103 |/|M |2 with i = 1, 2
directly contribute to, for instance, ∆mB in the B − B̄ mixing as well as to τ → eγ
and τ → µγ. We find that ∆m2

10(i, 3)/|M |2 <∼ 0.04 at MGUT, which means that
|(δl,u

13,23)RR|, |(δd,u
13,23)LL| <∼ ×10−2 at MGUT. Therefore, ∆mB and τ → eγ and τ → µγ

are sufficiently suppressed. The differences ∆m2
10(i, 3)/|M |2 also contribute through

the the mixing between the first two generations and the third generation to ∆mK
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and µ→ eγ. Assuming that the mass matrix of the up-type quarks is diagonal, and
using the known values of Cabibbo-Kobayashi-Maskawa matrix VCKM , we find that
that ∆m2

Ψ(i, 3)/|M |2 <∼ 0.04 does not cause any problems with the FCNC processes
mentioned above. The difference of −0.04 in m2

Ψ/|M |2 also causes no problem for
b→ sγ [5]. We also studied the logarithmic contributions to the non-aligned part of
hijk, which may contribute to the EDMs as well as ε′/ε in the K0−K̄0 system [5]. It
is found that the disorder of the trilinear couplings caused by the Yukawa couplings
are sufficiently suppressed to satisfy the constraints coming from these parameters.

We conclude that gauge interactions in extra dimensions can be used to suppress
the disorder of the SSB terms at the fundamental scale so that the FCNC processes
and dangerous CP-violating phases become tiny at lower energy scales. Moreover,
no charged sparticles become tachyonic in this scenario of the SSB parameters.
The suppression mechanism of the FCNC and CP-phases presented here does not
properly work in four dimensions. Therefore, the smallness of FCNC as well as of
EDM is a possible hint of the existence of extra dimensions.
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Japan Society for the Promotion of Science (JSPS) (No. 11640266, No. 13135210).
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