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ABSTRACT
We study minimal 5-dimensional extensions of the Standard Model, in which all or
only some of the SU(2)L and U(1)Y gauge fields and Higgs bosons propagate in the
fifth compact dimension. In all the 5-dimensional settings, the fermions are assumed
to be localized on a 3-brane. In addition, we present the consistent procedure
for quantizing 5-dimensional models in the generalized Rξ gauge. Bounds on the
compactification scale between 4 and 6 TeV, depending on the model, are established
by analyzing electroweak precision measurements and LEP2 cross sections.

1 Introduction

In the original formulations of string theory [1], the compactification radius R of the
extra dimensions and the string mass Ms were considered to be set by the 4-dimensional
Planck massMP = 1.9×1016 TeV. However, recent studies have shown [2–6] that conceiv-
able scenarios of stringy nature may exist for which R and Ms practically decouple from
MP. For example, in the model of Ref. [5], Ms may become as low as a few TeV. In this
case, Ms constitutes the only fundamental scale in nature at which all forces including
gravity unify. This low string-scale effective model could be embedded within e.g. type I
string theories [4], where the Standard Model (SM) may be described as an intersection
of higher-dimensional Dp branes [5–7].

As such intersections may be higher dimensional as well, in addition to gravitons the
SM gauge fields could also propagate within a higher-dimensional subspace with compact
dimensions of order TeV−1 for phenomenological reasons. Since such low string-scale
constructions may result in different higher-dimensional extensions of the SM [7], the
actual experimental limits on the compactification radius are, to some extent, model
dependent. Nevertheless, most of the derived phenomenological limits in the literature
were obtained by assuming that all the SM gauge fields propagate in a common higher-
dimensional space [8–14].

Here, we wish to lift the above restriction and focus on the phenomenological con-
sequences of models which minimally depart from the assumption of a universal higher-
dimensional scenario [15]. Specifically, we will consider 5-dimensional extensions of the
SM compactified on an S1/Z2 orbifold, where the SU(2)L and U(1)Y gauge bosons may
not both live in the same higher-dimensional space, the so-called bulk. In all our models,
the SM fermions are localized on the 4-dimensional subspace, i.e. on a 3-brane or, as it
is often called, brane. For each higher-dimensional model, we calculate the effects of the
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fifth dimension on the electroweak observables and analyze their impact on constraining
the compactification scale.

The organization of this brief report is as follows: in Section 2 we introduce the basic
concepts of higher-dimensional theories by considering a simple 5-dimensional Abelian
model. After briefly discussing how these concepts can be applied to the SM in Section
3, we turn our attention to the phenomenological aspects of the models of our interest
in Section 4. Because of the limited space, technical details are omitted in this note. A
complete discussion, along with detailed analytic results and references, is given in our
paper in [15]. Section 5 summarizes our numerical results and presents our conclusions.

2 5-Dimensional Abelian Models

As a starting point, let us consider the Lagrangian of 5-dimensional Quantum Electrody-
namics (5D-QED) given by

L(x, y) = −1
4
FMN (x, y)F

MN(x, y) + LGF(x, y) , (2.1)

where FMN denotes the 5-dimensional field strength tensor, and LGF(x, y) is the gauge-
fixing term. Our notation is: M,N = 0, 1, 2, 3, 5; µ, ν = 0, 1, 2, 3; x = (x0, �x); and y = x5.

In the absence of the gauge-fixing and ghost terms, the 5D-QED Lagrangian is
invariant under U(1) gauge transformations. To compactify the theory on an S1/Z2

orbifold, we demand for the fields to satisfy equalities like

Aµ(x, y) = Aµ(x, y + 2πR) ,

Aµ(x, y) = Aµ(x,−y) .
(2.2)

The field Aµ(x, y) is taken to be even under Z2, so as to embed conventional QED with
a massless photon into our 5D-QED. Then, the reflection properties of the A5(x, y) field
with respect to y are dictated by gauge invariance, i.e. A5(x, y) = −A5(x,−y).

Given (2.2), we can expand the fields in Fourier series, where the Fourier coefficients,
denoted Aµ

(n)(x), are the so-called KK modes. Integrating out the y dimension we obtain
the effective 4-dimensional Lagrangian including massless QED. The other terms describe
two infinite towers of massive vector excitations Aµ

(n) and (pseudo)-scalar modes A
5
(n) that

mix with each other, for n ≥ 1. The scalar modes A5
(n) play the rôle of the would-be

Goldstone modes in a non-linear realization of an Abelian Higgs model, in which the
corresponding Higgs fields are taken to be infinitely massive.

The above observation motivates us to seek for a higher-dimensional generalization
of ’t-Hooft’s gauge-fixing condition. We choose the following generalized Rξ gauge [15,16]:

LGF(x, y) = − 1

2ξ
(∂µAµ − ξ ∂5A5)

2 . (2.3)

Upon integration over the extra dimension, all mixing terms disappear and the Lagrangian
describes QED accompanied by a tower of massive gauge bosons Aµ

(n) and the respective

Goldstone modes A(n)5. The limit ξ → ∞ corresponds to the usual unitary gauge [17,
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18]. Thus, for a simple model, we have seen how starting from a non-covariant higher-
dimensional gauge-fixing condition, we can arrive at the known covariant 4-dimensional
Rξ gauge after compactification.

This quantization procedure can be successfully applied to theories that include
Higgs and gauge bosons living in the bulk and/or on the brane [19]. A brane Higgs
induces mixing terms between the Fourier modes. The KK mass eigenstates, found by di-
agonalizing the mass matrix, have slightly shifted masses and couplings to brane fermions
compared to the Fourier modes.

3 5-Dimensional Extensions of the Standard Model

The ideas introduced in Section 2 can be generalized for non-Abelian theories. As a
new feature, the self-interaction of gauge-bosons in non-Abelian theories leads to self-
interactions of the KK modes which are restricted by selection rules reflecting the S1/Z2

structure of the extra dimension.
For spontaneous symmetry-breaking theories, such as the Standard Model (SM),

the existence of new compact dimensions opens up several possibilities in connection with
the SU(2)L⊗U(1)Y gauge structure. For example, the SU(2)L and U(1)Y gauge fields
do not necessarily need to propagate both in the extra dimension. Such a realization
may be encountered within specific stringy frameworks, where one of the gauge groups is
effectively confined on the boundaries of the S1/Z2 orbifold [7].

However, in the most frequently investigated scenario, SU(2)L and U(1)Y gauge
fields live in the bulk of the extra dimension (bulk-bulk model). In this case, for generality,
we will consider a 2-doublet Higgs model, where one Higgs field propagates in the fifth
dimension, while the other one is localized. The phenomenology of this model is influenced
by the vacuum expectation values v1 and v2, or equivalently by tanβ = v2/v1 and v2 =
v2
1 + v2

2.
An even more minimal 5-dimensional extension of electroweak physics constitutes a

model in which only the SU(2)L-sector feels the extra dimension while the U(1)Y gauge
field is localized at y = 0 (bulk-brane model). In this case, the Higgs field being charged
with respect to both gauge groups has to be localized at y = 0 in order to preserve gauge
invariance of the (classical) Lagrangian. For the same reason, a bulk Higgs is forbidden
in the third possible model in which SU(2)L is localized while U(1)Y propagates in the
fifth dimension (brane-bulk model).

In all these minimal 5-dimensional extensions of the SM we assume that the SM
fermions are localized at the y = 0 fixed point of the S1/Z2 orbifold. All the KK modes of
a bulk field couple to a brane fermion. Because the KK mass eigenmodes generally differ
from the Fourier modes, their couplings to fermions have to be calculated for each model
individually.

4 Effects on Electroweak Observables

In this section, we will concentrate on the phenomenology and present bounds on the
compactification scaleM = 1/R of minimal 5-dimensional extensions of the SM calculated
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by analyzing a large number of high precision electroweak observables. We relate the SM
prediction OSM [20,21] for an observable to the prediction OHDSM for the same observable
obtained in the higher-dimensional SM under investigation through

OHDSM = OSM
(
1 + ∆HDSM

O
)
. (4.1)

Here, ∆HDSM
O is the tree-level modification of a given observable O from its SM value due

to the presence of one extra dimension. In order to enable a direct comparison of our
predictions with the precision data [20, 21], we include SM radiative corrections to OSM.
However, we neglect SM- as well as KK-loop contributions to ∆HDSM

O as higher order
effects.

As input SM parameters for our theoretical predictions, we choose the most accu-
rately measured ones, namely the Z-boson mass MZ , the electromagnetic fine structure
constant α and the Fermi constant GF . While α is not affected in the models under study,
MZ and GF generally deviate from their SM form when expressed in terms of couplings
and VEV’s. To first order in X = 1

3
π2m2

ZR
2, MZ and GF may be parameterized as

MZ = MSM
Z ( 1 + ∆Z X ) , GF = GSM

F ( 1 + ∆G X ) , (4.2)

where ∆Z and ∆G are model-dependent parameters. For example, one finds

∆Z =
{ − 1

2
sin4 β , − 1

2
sin2 θ̂W , − 1

2
cos2 θ̂W

}
. (4.3)

for the bulk-bulk, brane-bulk and bulk-brane models, with respect to the SU(2)L and
U(1)Y gauge groups.

The relation between the weak mixing angle θW and the input variables is also
affected by the fifth dimension. Hence, it is useful to define an effective mixing angle θ̂W ,
which still fulfills the tree-level relation

GF =
πα√

2 sin2 θ̂W cos2 θ̂W M2
Z

(4.4)

of the Standard Model, and relate it to θW by sin2 θ̂W = sin2 θW ( 1 + ∆θ X ).

For the tree-level calculation of ∆HDSM
O , it is necessary to consider the mixing effect

of the Fourier modes on the masses of the Standard-Model gauge bosons as well as on
their couplings to fermions. All the encountered shifts can be expanded in powers of X
and are calculated to first order. For the precision measurement at the Z pole or at lower
energies these effects are dominant. For cross sections at LEP2 energies, the dominant
higher dimensional contributions stem from the interference of the Standard Model with
virtual KK modes which roughly scales like s/M2.

Within the framework outlined above, we compute ∆HDSM
O for an extensive list of

precision observables [15]. In addition, we consider fermion-pair production at LEP2 [22].
Employing the results of ∆HDSM

O and calculating all the observables considered in our
analysis by virtue of (4.1), we confront these predictions with the respective experimental
values and calculate the corresponding χ2(X) where it is important to include correlations
between some of the observables. The bounds on X can be derived by requiring χ2(X)−
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SU(2)L-brane,
U(1)Y -bulk

SU(2)L-bulk,
U(1)Y -brane

SU(2)L-bulk,
U(1)Y -bulk
(brane Higgs)

SU(2)L-bulk,
U(1)Y -bulk
(bulk Higgs)

prec. obs. 4.2 2.9 4.6 4.6

µ+µ− 2.0 1.5 2.5 2.5

τ+τ− 2.0 1.5 2.5 2.5

hadrons 2.6 4.7 5.4 5.8

e+e− 3.0 2.0 3.6 3.5

combined 4.7 4.3 6.1 6.4

Table 1: Bounds on the compactification scale at the 2σ confidence level from
precision observables and the different fermion-pair production channels at LEP2.

χ2
min < n2 for X being not excluded at the nσ confidence level. Here, χ2

min is the minimal
χ2 in the physical region X ≥ 0. Using slightly different definitions for the bounds does
not lead to significantly different results.

Table 1 summarizes the lower bounds on the compactification scaleM = 1/R coming
from different observables. For the bulk-bulk model we consider the two extreme cases, a
pure bulk Higgs and a pure brane Higgs.

5 Discussion and Conclusions

By performing χ2-tests, we obtain different sensitivities to the compactification ra-
dius R for the three models under consideration: (i) the SU(2)L⊗U(1)Y -bulk model, where
all SM gauge bosons are bulk fields; (ii) the SU(2)L-brane, U(1)Y -bulk model, where only
the SU(2)L fields are restricted to the brane, and (iii) the SU(2)L-bulk, U(1)Y -brane
model, where only the U(1)Y gauge field is confined to the brane. The strongest bounds
hold for the often-discussed bulk-bulk model no matter if the Higgs boson is living in the
bulk or on the brane. For the bulk-brane models, we observe that the combined bounds
on 1/R are reduced by roughly 20 to 30%.

The lower limits on the compactification scale derived by the present global analysis
indicate that resonant production of the first KK state may be at the edge of the LHC
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reach, at which heavy KK masses up to 6–7 TeV [7,12] might be explored. One probably
will not be able to probe resonant effects originating from the second KK state, and
so more phenomenological work has to be done to differentiate the model from other
4-dimensional new-physics scenaria.

In addition, we have paid special attention to consistently quantize the higher-dimen-
sional models in the generalized Rξ gauges. Specifically, we have been able to identify the
appropriate higher-dimensional gauge-fixing conditions which should be imposed on the
theories so as to yield the known Rξ gauge after the fifth dimension has been integrated
out [15, 23].
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