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We argue that in the presence of supersymmetry, an ordinary commutative SU(N)
gauge theory with a general matter content can always be embedded into a noncom-
mutative U(N) theory at energies above the noncommutativity mass scale. The
IR/UV mixing crucially decouples the U(1) degrees of freedom in the infrared. We
also discuss the special rôle of the U(1) degrees of freedom in triggering the dy-
namical breaking of supersymmetry in a noncommutative framework, and outline
how noncommutative Grand Unification might be achieved.

Noncommutative field theories are a rich subject with a variety of unexpected and
intriguing features.a The notion of the smearing of the space-time structure at distances
smaller than the Planck length seems to be a natural consequence of the basic principles
of Quantum Mechanics and General Relativity; early considerations in this direction date
back, not surprisingly, to Dirac and Heisenberg. More recently, the importance of theories
on noncommutative backgrounds has been emphasised by many recent developments in
string and field theory3,4,5. In5, Seiberg and Witten have shown that space-time noncom-
mutativity, [xµ, xν ] = iθµν , naturally arises in the low-energy description of open strings
ending on D-branes in the presence of a constant B-field. A noncommutative field theory
can be equivalently reformulated as a deformation of an ordinary quantum field theory in
which the product of fields is replaced by an associative, noncommutative product (the
so-called “star” or “Moyal” product)6,
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θµν∂µf∂νg + · · · (1)

This observation has far-reaching consequences: it leads to the possibility of analyzing
their dynamics with the standard, powerful field theory techniques based on functional
integration. The combined effect of an uncertainty principle on space-time coordinates
with the usual Heisenberg principle leads to a curious mixing of ultraviolet and infrared
effects, which in some cases generates infrared singularities in the low energy effective
action. It has been shown that this infrared/ultraviolet (IR/UV) mixing7,8 dramatically
invalidates the naive expectation about a universal behaviour in the infrared for commu-
tative and noncommutative theories: namely, the infrared regime of a noncommutative
theory is in general completely different from that of its commutative counterpart and,
most importantly, a noncommutative gauge theory must be supersymmetric in order to be
consistent7,8,9. As an example, consider a noncommutative Super Yang-Mills theory with

aFor recent reviews and extensive lists of references see1,2.
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gauge group U(N) (theories based on SU(N) are not consistent). The leading order terms
in the derivative expansion of the Wilsonian effective action read9,10:

Leff = − 1
4g21 (k)

F U(1)
µν F U(1)

µν − 1
4g2

N
(k)

F SU(N)
µν F SU(N)

µν + · · · , (2)

where the dots stand for terms involving fermions and higher-derivative corrections. The
multiplicative coefficients in front of the gauge kinetic terms in (2) define the Wilsonian
coupling constants of the corresponding gauge factors. Their dependence on the momen-
tum scale k is displayed in Figure 1. The running of the U(1) has the following asymptotic
behaviour:

1
g21 (k)

→ ± 3N
(4π)2

log k2 , (3)

where the plus (minus) sign corresponds to k2 → ∞ (k2 → 0), whereas for the SU(N)
gauge factor we have, in both limits:
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Figure 1. Running of the effective couplings as a function of the Wilsonian scale k.

The change in the running of the U(1) coupling in (3) occurs at the scale k2 ∼ M2
NC

,

where MNC ∼ θ−1/2 is the noncommutative mass. This running was interpreted in11 as
having a full noncommutative U(N) gauge theory in the UV, which in the low-energy limit
appears as a commutative SU(N) theory, with the U(1) degrees of freedom which become
progressively more weakly coupled (i.e. unobservable) in the infrared. Note that this does
not implies that the noncommutative U(N) gauge symmetry is broken. In fact, a gauge-
invariant completion of (2) was proposed in12,13 which involves open Wilson lines. This
completion introduces higher-derivative terms, which are irrelevant for the low-energy
dynamics.

The question then arises as to whether it is possible to find a realistic, non-
supersymmetric theory for Particle Physics based on a noncommutative set-up: the issue
of supersymmetry breaking is clearly crucial. We found that, remarkably, noncommu-
tative supersymmetric gauge theories solve this problem in a self-consistent way.11 The
general mechanism works as follows. As reminded above, noncommutative gauge theories
contain a U(1) factor; supersymmetry gets broken in the U(1) sector, which gets decou-
pled in the infrared theory. This supersymmetry breaking can be easily accomplished by
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adding to the tree level Lagrangian a Fayet-Iliopoulos D-term, LFI = ξF I

∫
d2θd2θ̄ trNV ,

where V is the real U(N) vector superfield and the trace over the N by N matrices selects
the U(1)-component of V . The Fayet-Iliopoulos action,

∫
d4xLF I, is invariant under the

noncommutative U(N) group, and can be naturally introduced in any U(N) theory. This
provides us with a scenario of a “gauge-mediated” supersymmetry breaking, where the
U(1) degrees of freedom, which eventually become arbitrarily weakly coupled in the IR,
play the rôle of the hidden sector11. Both the hidden sector and the messenger sector
are naturally part of the noncommutative U(N) gauge theory. We would like to stress
that this mechanism of dynamical supersymmetry breaking is deeply intertwined with the
IR/UV mixing, which affects only the U(1) degrees of freedom.

Finally, in14 we were able to construct general representations of noncommutative U(N)
groups, which are needed in order to apply these ideas to more general contexts, as Grand
Unified Theories.

We conclude with a few comments. The results of our analysis show that in the
presence of supersymmetry, an ordinary commutative SU(N) gauge theory with a general
(anomaly free) matter content can always be embedded into a noncommutative U(N) the-
ory at energies above the noncommutativity mass scale. At energies below this scale, the
U(1) degrees of freedom decouple due to the infrared/ultraviolet mixing, and the noncom-
mutative theory reduces to its commutative counterpart. The mixing of the ultraviolet
with the infrared is the source of very unusual phenomena in field theory, and leads to
conjecture novel scenarios of dynamical supersymmetry breaking. Moreover, the possibil-
ity of constructing generic-rank representations of noncommutative groups opens a new
avenue of research, focusing on formulating noncommutative extensions of Grand Unified
Theories. This makes it more plausible that a noncommutative set-up might be relevant
for a unified description of interactions.

We have not addressed the issue of anomaly (non-)cancellation in noncommutative
chiral theories. This is an important point, which deserves to be carefully studied in
order to construct a proper noncommutative version of the (supersymmetric) Standard
Model.

The challenge we face is, therefore, to construct realistic models for Particle Physics
based on a noncommutative formulation.

It is a pleasure to thank Chong-Sun Chu and Valya Khoze for a very enjoyable and
stimulating collaboration on the subject of this talk. We would also like to thank Nick
Dorey, Tim Hollowood, Tim Jones, Gordy Kane, Prem Kumar, Gian Carlo Rossi and
Massimo Testa for discussions.
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