SUSY CALCULATIONAL TOOLS

Abdelhak DJOUADI (LPMT Montpellier)

- 1. Introduction
- 2. General codes for spectrum calculation
 - ISASUSY
 - SUSPECT
 - SOFTSUSY
 - SPHENO
- 3. Codes for NLO spectrum, production, decay and cosmology
 - NLO Higgs and sparticle mass calculations
 - NLO Higgs and SUSY particle production and decay
 - Codes for analytical calculations
 - Dark Matter calculations
- 4. Monte–Carlo event generators
- 5. Summary.

Introduction/Motivations

Unconstrained MSSM: minimal gauge group, minimal particle content, R_p conservation and minimal set of soft SUSY-breaking parameters: $\gtrsim 100$ free parameters.

Non viable phenomenology \rightarrow constraints from theory and experiment: no intergeneration mixing, no new source of CP, 1st/2d gen. universality. still $\gtrsim 22$ free parameters !!

This large number of parameters enters in:

- The evaluation of the masses of ≥ 33 SUSY/Higgs particles.
- The complicated couplings (mixing, diagonalis., Majorana, RC..)
- The many possible decay modes (including higher order).
- The various production channels in $pp, ep, e^+e^-, e\gamma, \gamma\gamma$ and $\mu^+\mu^-$.

Very difficult to make detailed study of spectra and to compare with expectation and/or outcome in experimental searches and/or simulations: unification boundary conditions at the high–energy scale (ex: Λ_{GUT}):

Only a few $\mathcal{O}(5)$ parameters \Rightarrow constrained/predictive models.

However, even in this case the situation is still rather complicated:

- Many possibilities: mSUGRA, AMSB, GMSB, strings, $\tilde{\nu}_R$, extra dim...
- RGE (coupled) evolution from the high to low energy scales.
- Proper and complicated breaking of electroweak symmetry (EWSB).
- Still calculate mass, coupling, decay, production of 33 particles.

A very tricky situation indeed.... This needs:

- Very sophisticated programs to encode all the information.
- Pass to MC event generators to link with experiment.

General Codes for Spectrum Calculation

- Purpose: Calculation of SUSY and Higgs particle spectrum in:
- Constrained models: mSUGRA, GMSB, AMSB, etc...
- Unconstrained MSSM but with boundary conditions at high-scale.
- There are several programs available on the market:
 - **ISASUSY**: H. Baer, F. Paige, S. Protopopescu and X. Tata. http://paige.home.cern.ch/paige

- **SUSPECT** : A. Djouadi, J.L. Kneur, G. Moultaka. http://www.lpm.univ-montp2.fr:6714/k̃neur/suspect.html

- **SOFTSUSY** : B. Allanach.

http://allanach.home.cern.ch/allanach/softsusy.html

- **SPHENO**: W. Porod.

to be made public soon

- A number of private codes.
- They have different features in general (good for checks!):
 - Some are in Fortran, some are in C++ (Softsusy).
 - Some are interfaced with event generators (Isajet/Suspect).
 - Have different options for models and flexibility.
 - Use different approximations (ex: NLO corrections, etc...)
- They in principle involve at least four main ingredients:
- RGE of parameters between low and high scales (M_Z and M_{GUT}).
- Consistent implementation of electroweak symmetry breaking (REWSB).
- Calculation of the physical masses (including radiative corrections).
- Check conformity of obtained spectrum with theory and experiment.

ALGORITHM

Choice of low energy inputs: $\alpha(M_Z)$, $\sin^2 \theta_W$, $\alpha_S(M_Z)$, $m_{t,b,\tau}^{\text{pole}}$; $\tan \beta(M_Z)$ Radiative corrections $\rightarrow g_{1,2,3}^{\overline{\text{DR}}}(M_Z)$, $\lambda_{\tau}^{\overline{\text{DR}}}(M_Z)$, $\lambda_{b}^{\overline{\text{DR}}}(M_Z)$, $\lambda_{t}^{\overline{\text{DR}}}(m_t)$ First iteration: no SUSY Radiative Corrections

Two-loop RGE for $g_{1,2,3}^{\overline{\text{DR}}}$ and $\lambda_{\tau,b,t}^{\overline{\text{DR}}}$ with choice: $\begin{array}{l} -g_1 = g_2 \cdot \sqrt{3/5} \\ -M_{\text{GUT}} \sim 2 \cdot 10^{16} \text{ GeV} \end{array}$ Include all SUSY thresholds via step functions in β functions. First iteration: Unique threshold guessed.

Here your can chose your model (mSUGRA, GMSB, AMSB, or pMSSM). Fix your high–energy inputs (mSUGRA: $m_0, m_{1/2}, A_0, \operatorname{sign}(\mu), \operatorname{etc...})$.

> Run down with RGE to: $\begin{aligned}
> -M_Z(m_t) \text{ for } g_{1,2,3} \text{ and } \lambda_{\tau,b}(\lambda_t) \\
> -M_{\text{EWSB}} \text{ for } \tilde{m}_i, \tilde{M}_i, A_i \\
> \end{aligned}$ First iteration: Guess for $M_{\text{EWSB}} = M_Z$.

 $\mu^2, \mu B = F_{\text{non-linear}}(m_{H_1}, m_{H_2}, \tan \beta, V_{\text{loop}})$ $V_{\text{loop}} \equiv \text{Effective potential at 1-loop with all masses.}$ First iteration: No V_{loop} included

Here you can check μ convergence, CCB, UFB, etc...

Diagonalisation of mass matrices and calculation of masses and couplings Radiative corrections to the physical Higgs, sfermion, gaugino masses. First iteration: No Radiative Corrections.

Here you can check that you obtain a reasonable spectrum:

- no tachyonic masses (from RGE, EWSB or mixing), good LSP,
- not too much fine-tuning (for instance in M_Z , λ_t w.r.t μ^2 , μB),
- agreement with experiment: EW precision data, (g 2), etc...
- Small iteration on μ : $\mu_i \mu_{i-1} \leq \epsilon$.
- Long iteration RGE/RC: 3 to 4 iterations (larger for $\tan \beta \ge 40$).

MAIN FEATURES OF THE VARIOUS PROGRAMS

ITEM	ISASUSY	SUSPECT	SOFTSUSY	SPHENO*
Models	mS,AM,GM	${ m mS,AM,GM^*}$	mS,AM,GM	mS,AM,GM
	MSSM(25)	MSSM(22)	_	_
	$\tilde{\nu}_R$, strings	_	-	string sc.
RGE	2–loop g_i, λ_i	2–loop g_i, λ_i	2–loop g_i, λ_i	2–loop g_i, λ_i
	2 loop soft	1–loop soft	1–loop soft	2–loop soft
EWSB	$\sqrt{m_{ ilde{t}_1}m_{ ilde{t}_2}}$	$flexible^*$	$\sqrt{m_{ ilde{t}_1}m_{ ilde{t}_2}}$	$\sqrt{m_{\tilde{t}_L}m_{\tilde{t}_R}}$
$V_{\rm loop}/{ m tad}.$	$t,b, ilde{t}, ilde{b}$	1–loop	1–loop	1–loop
Thresholds	Steps	Steps	in RC	in RC
Thresholds SM	Steps leading	Steps lead/full	in RC lead/full	in RC full
Thresholds SM RC SUSY	Steps leading approx.	Steps lead/full ~ PBMZ	in RC lead/full ~ PBMZ	in RC full full
Thresholds SM RC SUSY Higgs	Steps leading approx. 1Loop EP	Steps lead/full ~ PBMZ SUBH/BDSZ*	in RC lead/full ~ PBMZ FHF	in RC full full BDSZ
Thresholds SM RC SUSY Higgs Checks	Steps leading approx. 1Loop EP –	Steps lead/full ~ PBMZ SUBH/BDSZ* CCB,UFB,FT	in RC lead/full ~ PBMZ FHF FineTuning	in RC full full BDSZ CCB,UFB
Thresholds SM RC SUSY Higgs Checks	Steps leading approx. 1Loop EP – –	Stepslead/full \sim PBMZSUBH/BDSZ*CCB,UFB,FTEW, a_{μ}	in RC lead/full ~ PBMZ FHF FineTuning -	in RC full full BDSZ CCB,UFB EW, a_{μ} , $bs\gamma$
Thresholds SM RC SUSY Higgs Checks Decays	Steps leading approx. 1Loop EP – – Yes	Stepslead/full \sim PBMZSUBH/BDSZ*CCB,UFB,FTEW, a_{μ} hdecay/sdecay*	in RC lead/full ~ PBMZ FHF FineTuning - _	in RC full full BDSZ CCB,UFB EW, $a_{\mu}, bs\gamma$ Yes

* To come soon.

- PBMZ: D. Pierce, J. Bagger, K. Matchev and R. Zhang, hep-ph/9606211.
- FHF: S. Heinemeyer, W. Hollik and G. Weiglein, hep-ph/9903404.
- SUBH: M. Carena, M. Quiros and C. Wagner, hep-ph/9508343.
 BDSZ: A. Brignole, G. Degrassi, P. Slavitch and F. Zwirner, hep-ph/0112177.

SCANS AND CONSTRAINTS ON MODELS

Possibility of link with other routines, imposing theoretical and experimental constraints and make scans on the parameter space of the models:

- \rightarrow strong constraints on the parameter space of the various models.
- \rightarrow delineate regions of par. space where SUSY signals can be expected.

Example: mSUGRA with Suspect*

• Theory Constraints:

- proper EWSB (μ converge and good M_A^2), no tachyons from RGE.
- simple CCB and UFB, no tachyons from mixing, χ_1^0 LSP.

• Experimental constraints:

- Bounds on sparticle masses from LEP2 $(\chi, \tilde{\ell})$ and Tevatron (\tilde{q}, \tilde{g}) .
- Bounds on Higgs masses from LEP $(M_{H^0} \gtrsim 114 \text{ GeV}, M_{h,A} \gtrsim M_Z)$.
- Precision measurements of $M_W, \sin^2 \theta_W$: $\Delta \rho^{\rm SUSY} \lesssim 2 \cdot 10^{-3}$.
- SUSY/Higgs Contributions to $b \to s\gamma$: $2.10^{-4} \lesssim BR \lesssim 5.10^{-4}$. (Routine provided by Ciuchini, Degrassi, Gambino, Giudice).

• Additional requirements:

- -2σ evidence for SM Higgs at LEP: 113 GeV $\leq M_{h,H} \leq 117$ GeV.
- -1.6σ contribution to $(g-2)_{\mu}: 6 \cdot 10^{-10} \lesssim a_{\mu} \lesssim 60 \cdot 10^{-10}$.
- $-\chi_1^0$ solution for CDM problem: $0.1 \lesssim \Omega_{\chi} h^2 \lesssim 0.3$.

(Routine for χ_1^0 (co)-annihilation and relic density by M. Drees)

• Expectations for sparticle/Higgs production at colliders.

* Manuel Drees, Jean-Loic Kneur and A. Djouadi, JHEP 0108:055,2001. See also many other analyses in the recent years: Ellis, Ganis, Nanopoulos and Olive; Battaglia et al.; Arnowitt, Dutta, Hu and Santoso; Roszkowski, Ruiz de Austri and Nihei; Lahanas and Spanos; Gomez, Lazarides and Pallis; Feng, Matchev and Wilczek; Bottino, Donato, Fornengo and Scopel; Baltz and Gondolo; Chattopadhyay and Pran Nath; Barger and Kao; de Boer, Huber, Sander

and Kazakov; Belanger, Boudjema, Cottrant, Godbole and Semenov,

COMPARISON BETWEEN THE VARIOUS PROGRAMS From Sabine Kraml (see talk in // session).

- Top-Letft: $m_{1/2} = 300 \text{ GeV}, A_0 = 0, \tan \beta = 10, \sin(\mu) > 0, m_0 = 1450 \text{ GeV}.$

- Top-Right: $m_{1/2} = 300 \text{ GeV}, A_0 = 0, \tan \beta = 10, \sin(\mu) > 0.$
- Bottom-Left: $m_{1/2} = 300 \text{ GeV}, A_0 = 0, \tan \beta = 10, \sin(\mu) > 0.$
- Bottom-Right: $m_{1/2} = 300 \text{ GeV}, A_0 = 0, \sin(\mu) > 0, m_0 = 4000 \text{ GeV}.$

Figure 1: Constraints on the $(m_{1/2}, m_0)$ mSUGRA plane. Top-Left: individual constraints from non-convergent μ (yellow region), tachyonic M_A (green), tachyonic sfermions (blue), light sfermions (dark), light charginos (brown), $\tilde{\chi}_1^0$ non-LSP (light blue), BR $(b \to s\gamma)$ (medium grey) and light h boson (light and medium grey). The three other plots are for the 1σ (dark colors) and 2σ (light colors) "evidence" for, the Higgs boson (but with larger error bars, Top-Right), the $(g_{\mu} - 2)$ (Bottom-Left) and the Dark Matter (Bottom-Right).

Figure 2: The $(m_{1/2}, m_0)$ mSUGRA plane where SUSY and Higgs particles can be produced at an e^+e^- collider with a c.m. energy $\sqrt{s} = 1.2$ TeV. The grey areas are those excluded by theoretical and experimental constraints. The colored regions are those where then cross sections are large enough for the particles to be produced: $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ (green), $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ (red), $\tilde{l}^+ \tilde{l}^-$ (blue), $\tilde{\nu}\tilde{\nu}^*$ (purple), $\tilde{t}_1\tilde{t}_1^*$ (dark blue), $\tilde{b}_1\tilde{t}_1^*$ (dark blue) and the heavy MSSM H, A, H^{\pm} bosons (yellow). Note that some of these regions are overlapping. The lines are the 5σ reach contours for sparticles at the LHC in the missing E_T channel with a luminosity $\int \mathcal{L}100$ fb⁻¹ adapted from Ref. [?].

Codes for spectrum, decay & production

1. NLO Higgs and Sparticle mass calculations

- Very important for Higgs boson and also for SUSY particle masses:
 - Possibly large (QCD, λ_t): alters reach at colliders (Higgs at LEP).
 - Alters search strategy: allows or not some decay modes $(\tilde{t}_1 \rightarrow b\chi_1^+)$
 - $-m_{\tilde{P}} m_{\rm LSP} \propto E_T^{\rm mis}$: important for experimental searches.
 - $-m_{\tilde{P}} m_{\rm LSP}$ important for relic density (co-annihilation).
- For sparticle masses: see previous codes for spectrum calculation.
- For the MSSM Higgs boson masses (also included in previous codes):
 - **1.** SUBH (M. Carena, M. Quiros and C. Wagner):

http://gate.hep.anl.gov/cwagner/subh.f

- Eff. Pot. approach + QCD RG improvement + leading λ_t^2 corrections.
- Includes now gluino corrections to m_b, m_t
- **2.** FeynHiggs (S. Heinemeyer, W. Hollik and G. Weiglein):

http://www-itp.physik.uni-karlsruhe.de/feynhiggs/

- Feynman diag. approach: full 1 loop + 2 loop SUSY–QCD at $q^2 = 0$.
- Version FeynHiggsFast has leading 1-loop and app. 2-loop (faster).
- BDSZ* (A. Brignole, G. Degrassi, P. Slavich and F. Zwirner): Hopefully to be released soon (hein Pietro?).
- Leading one-loop corrections (full corrections to come).
- Full $\alpha_s \lambda_t^2$ corrections including gluino contributions.
- Full λ_t^4 and $\alpha_s \lambda_b^2$ corrections including gluino contributions.
- 4. Some approximate and private codes

2. NLO Higgs and SUSY particle production calculations

- NLO QCD corrections are very important for Higgs and SUSY particle production at hadron colliders: $K \sim 2$ at LHC (see talk by M. Spira). - Decays of SUSY and Higgs particles can be complicated: many channels, higher order decays, important radiative corrections, etc...

(Non–exhaustive) list of public codes:

- NLO Higgs production at hadron colliders (M. Spira¹):
- HIGLU: $pp \to gg \to h, H, A$ (NLO).
- VV2H/V2HV: $qq \rightarrow h, H + qq$ and W, Z + h, H (NLO).
- HQQ: $pp \rightarrow q\bar{q}, gg \rightarrow h, H, A + Q\bar{Q}$ (LO, NLO to come).
- HPAIR: $pp \rightarrow q\bar{q}, gg \rightarrow hh, HH, hA, HA, AA$ (partly NLO).
- NLO SUSY particle production at hadron colliders (M. Spira et al.):
- PROSPINO: $pp \rightarrow \tilde{q}\tilde{q}, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ (NLO).
- Pair and associated production of gauginos at NLO to come...
- Production of Higgs and SUSY particles at e^+e^- colliders:
- SUSYGEN (S. Katsanevas et al.): also MC generator, see later.
- HZHA (P. Janot): MC generator for Higgs production at LEP2.
- Many four or six fermion production processes at e^+e^- colliders....
- Decays of Higgs and SUSY particles:
- ISASUSY: two-body Higgs and SUSY decays available.
- HDECAY²: SM and MSSM Higgs decays with higher order effects.
- SDECAY^{*3}: SUSY particle decays including higher order effects.
- SPHENO^{*} (W. Porod): 2 and 3-body SUSY particle decays.

¹http://www.desy.de/ spira/

²AD, Jan Kalinowski, Michael Spira.

³AD, Yann Mambrini, Margarete Mühlleitner.

3. Automatic Matrix Element Generators

- Multi-particle processes are very important for pp and e^+e^- physics. Ex: pp or $e^+e^- \rightarrow Ht\bar{t} \rightarrow 8$ or 10 fermions if $H \rightarrow b\bar{b}$ or WW.
- Large MEs for the full process: needs to be calculated automatically and interfaced to MC event generators for a full simulation.

There are two major codes for SM and SUSY Physics

- **CompHEP**: A. Pukhov, E. Boos, A. Semenov et al. http://theory.sinp.msu.ru/comphep
 - Uses trace techniques and Vegas for PS integration.
 - Calculates its own SUSY Feynman rules and spectra (Semenov).
 - Easy interface with MC generators. Rapid development.
- **GRACE–SUSY**: Minami-Tateya Group (T. Kon et al.) http://www-sc.kek.jp/minami
 - Only e^+e^- processes (pp to come) with Form/Reduce for traces.
 - Has only selected processes and needs model files for the others.
 - No (SUSY) news since some time...

There exist other codes but do not include SUSY processes yet:

- $\bullet \ MadGraph: \ http://pheno.physics.wisc.edu/Software/MadGraph/$
- AMEGIC++: F.Krauss, R.Kuhn, G. Soff
- O'MEGA/WHIZARD: T. Ohl and W. Kilian
- FeynCalc: http://www.feyncalc.org/

.

4. Dark Matter Codes

Several experiments for Dark Matter searches are in progress or planed. Low energy SUSY (MSSM) has a very good candidate: the LSP (χ_1^0) . Important ingredients: (un)constrained MSSM predictions for:

- the relic density of the LSP: $\sigma(\chi_1^0\chi_1^0 + \chi_1^0\tilde{P})$.

- the rate for direct detection: $\chi_1 N \to \chi_1^0 N$.

– the rate for indirect detection: $\chi_1^0\chi_1^0 \rightarrow \gamma\gamma, \gamma Z$ and $\bar{p}, e^+, \nu + X$. For relic density: needs SUSY–Higgs spectra, annihilation/co–annihilation cross sections, pair production thresholds, effects of resonances... Needs also: modeling of the halo, hadronisation, nuclear matrix elements,

particle flux, interaction and propagation, etc...

There are two main multi-purpose codes which include all these⁴:

• DarkSUSY (Gondolo, Edjso, Bergström, Illio, Baltz):

http://www.physto.se/ edsjo/darksusy/

- Own spectra pMSSM calculation but can be linked to SUSPECT.
- Hadronisation and SM particle decays from PITHYA.
- NeutDriver (G. Jungman):

http://t8web.lanl.gov/people/jungman/neut-package.html

- Has only unconstrained MSSM (69 parameters).
- Seems to have bugs and no recent upgrade.

There is also a new code which calculates the relic density in the MSSM:

- MicrOmegas (G. Belanger, F. Boudjema, A. Pukhov, A. Semenov):
- (co)-annihilation calculation with all channels based on ComHEP.
- Includes isasusy/feynhiggs/hdecay/suspect* for spectra.
- A number of private codes for one or all items is available....

⁴See talk of Emanuel Nezri in // sessions.

Monte-Carlo Event generators

– Big mastodons which do everything from production to hadron decay and simulate the signals and the backgrounds.

- Five phases in simulation: 1) Hard production processes, 2) Parton Shower, 3) Heavy particle decays, 4) Hadronisation, 5) Hadron decays.

– I discuss only production (1) and decays (3) of SUSY/Higgs particles. The rest of the simulation is as in the Standard Model.

There are three + one multipurpose MC generators⁵:

- **ISAJET**: H. Baer, F. Paige, S. Protopopescu and X. Tata. http://paige.home.cern.ch/paige
- Oldest and most used of SUSY generators.
- All SUSY production channels (including some R'_p) are built in.
- Linked with ISASUSY for spectrum and decay BR's calculation.
- * Rather poor description of SM processes.
- (S)PYTHIA: T. Sjostrand et al. and S. Mrenna. http://www.thep.lu.se/ torbjorn/Pythia.html
- Gives the best description of SM physics.
- Calculates the 2-body decay rates of SUSY and Higgs particles.
- Wide range of production processes (including R'_p) implemented.
- * Approximate SUSY spectrum calculation (analytical formulae).
- **HERWIG**: S. Moretti, P. Richardson (for SUSY) et al. http://hepwww.rl.ac.uk/theory/seymour/herwig/
- Good for SM but SUSY aspect is developing very rapidly.
- Has many production channels, good treatment of R_p/p
- Has spin correlations in all processes and polarisation in e^+e^- .
- * No built-in code for spectra or decay (interface with Isajet/Hdecay).
- **SUSYGEN:** N.Ghodbane, S.Katsanevas, P.Morawitz, E.Perez http://lyoinfo.in2p3.fr/susygen/susygen3.html
- Specialized in e^+e^- but now includes some processes in pp, ep.
- Spectrum from SuSpect; calculates SUSY decays and uses Hdecay.
- Has full spin correlations and includes all parity violation processes.
- -* Interfaced with PYTHIA for parton shower and hadronisation.
- * Cannot simulate the SM backgrounds.

⁵Thanks to Peter Richardson for his help here.

Summary

• More and more programs are available for public use:

- Good for check/comparison (not so good to have only one gun...).

– Makes healthy competition between codes (upgrade or perish...).

• Programs get more and more sophisticated (and no sparticle yet!)

- Only a few or some aspects of SUSY (theoretical, phenomenological or experimental) are dealt with by one single program.

– This calls for complementarity between various programs (spectra calculation, NLO corrections, matrix elements, Monte–Carlos...).

- Big efforts for clarity, simplicity, speed, user-friendly, interface..

– Time consuming and not very safe....

- More interplay between theory and experiment (good for the field!):
 - Many workshops on Tools (GdR-SUSY, SUSY-Tools, LesHouches..)
 - Many discussions for interfacing (Les Houches Accord...).

• There is a rapid development:

- Many new codes have appeared in the recent years.
- Recent changes in the major generators and spectra codes.
- Move to C++ (good news or bad news?).

Ready for the next round of experiment! Hope that SUSY is also ready...