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Abstract

We discuss issues related with the cosmological constant problem in the light
of recent observations which tend to indicate that the expansion of the universe is
presently undergoing an acceleration. Models of fundamental physics which address
these issues are discussed.

1 Introduction

Despite the tremendous successes of fundamental physics, as well of general relativity
applied to cosmology, in the XXth century, we are left with the feeling that the story is
not complete yet because of the cosmological constant problem. As we will discuss below,
vacuum energy provides a source of cosmological constant and it is not understood what
is the mechanism which cancels the vacuum energy through the different phase transitions
that the universe undergoes. Not much progress has been made on this issue from the
theoretical side. On the other hand, some recent observations tend to give a specific
role to vacuum energy. First, the latest results on the cosmic microwave background,
in particular the fact that the energy density of the universe seems to coincide with
the critical density, tend to favor an inflation era where vacuum energy was driving the
evolution of the universe. Second, the observation that the expansion of the universe is
presently accelerating is easily understood in a context where vacuum energy, or a more
general form of dark energy, makes the majority of the present energy content of the
universe.

2 The cosmological constant problem

As is well known, the cosmological constant appears as a constant in Einstein’s equations:

Rµν − 1

2
gµνR = 8πG

N
Tµν + λgµν , (1)

where G
N
is Newton’s constant, Tµν is the energy-momentum tensor and Rµν the Ricci

tensor, which is obtained from the Riemann tensor measuring the curvature of spacetime.
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The cosmological constant λ is thus of the dimension of an inverse length squared. It was
introduced by Einstein [1] in order to build a static universe model, its repulsive effect
compensating the gravitational attraction, but, as we will now see, constraints on the
expansion of the Universe impose for it a very small upper value.

It is more convenient to work in the specific context of a homogeneous and isotropic
Friedmann-Lemâıtre universe, with a Robertson-Walker metric:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2)

where a(t) is the cosmic scale factor, which is time-dependent in an expanding or con-
tracting universe. Implementing energy conservation into the Einstein equations then
leads to the Friedmann equation, which gives an expression for the Hubble parameter H
measuring the rate of the expansion of the Universe:

H2 ≡ ȧ2(t)

a2(t)
=

1

3
(λ+ 8πG

N
ρ)− k

a2
, (3)

In this equation, we use standard notations: ȧ is the time derivative of the cosmic scale
factor, ρ = T 0

0 is the energy density and the term proportional to k is a spatial curvature
term. Note that the cosmological constant appears as a constant contribution to the
Hubble parameter.

Evaluating each term of the Friedmann equation at present time t0 allows for a rapid
estimation of an upper limit on λ. Indeed, we have for the Hubble constant H0 i.e. the
present value of the Hubble parameter, H0 = h0 × 100 km.s−1Mpc−1 with h0 of order
one, whereas the present energy density ρ0 is certainly within one order of magnitude of
the critical energy density ρc = 3H2

0/(8πGN
) = h2

0 2.10−26 kg.m−3; moreover the spatial
curvature term certainly does not represent presently a dominant contribution to the
expansion of the Universe. Thus, (3) considered at present time implies the following
constraint on λ:

|λ| ≤ H2
0 . (4)

In other words, the length scale �Λ ≡ |λ|−1/2 associated with the cosmological constant
must be larger than the Hubble length �H0 ≡ cH−1

0 = h−1
0 .1026 m, and thus be a cosmo-

logical distance.
This is not a problem as long as one remains classical: �H0 provides a natural cos-

mological scale for our present Universe. The problem arises when one tries to combine
gravity with quantum theory. Indeed, from Newton’s constant and the Planck constant

h̄, one can construct the reduced Planck mass scale m
P
=
√
h̄c/(8πG

N
) = 2.4 × 1018

GeV/c2. The corresponding length scale is the Planck length

�
P
=

h̄

m
P
c
= 8.1× 10−35 m . (5)

The above constraint now reads:

�Λ ≡ |λ|−1/2 ≥ �H0 =
c

H0
∼ 1060 �

P
. (6)



4: Cosmology 397

In other words, there are more than sixty orders of magnitude between the scale associated
with the cosmological constant and the scale of quantum gravity.

A rather obvious solution is to take λ = 0. This is as valid a choice as any other in a
pure gravity theory. Unfortunately, it is an unnatural one when one introduces any kind
of matter. Indeed, set λ to zero but assume that there is a non-vanishing vacuum (i.e.
ground state) energy: < Tµν >= ρvacgµν ; then the Einstein equations (1) read

Rµν − 1

2
gµνR = 8πG

N
Tµν + 8πG

N
ρvacgµν . (7)

The last term is interpreted as an effective cosmological constant (from now on, we set
h̄ = c = 1):

λeff = 8πG
N
ρvac ≡ Λ4

m2
P

. (8)

Generically, ρvac receives a non-zero contribution from symmetry breaking: for instance,
the scale Λ would be typically of the order of 100 GeV in the case of the electroweak gauge
symmetry breaking or 1 TeV in the case of supersymmetry breaking. But the constraint
(6) now reads:

Λ ≤ 10−30 m
P
∼ 10−3 eV. (9)

It is this very unnatural fine-tuning of parameters (in explicit cases ρvac and thus Λ are
functions of the parameters of the theory) that is referred to as the cosmological constant
problem, or more accurately the vacuum energy problem.

The most natural reason why vacuum energy would be vanishing is a symmetry ar-
gument. Global supersymmetry indeed provides such a rationale. The problem is that,
at the same time, supersymmetry predicts equal boson and fermion masses and there-
fore needs to be broken. The amount of breaking necessary to push the supersymmetric
partners high enough not to have been observed yet, is incompatible with the limit (9).

Moreover, in the context of cosmology, we should consider supersymmetry in a gravity
context and thus work with its local version, supergravity. The criterion of vanishing
vacuum energy is traded for one of vanishing gravitino mass. Local supersymmetry is
then absolutely compatible with a non-vanishing vacuum energy, preferably a negative
one (although possibly a positive one). This is both a blessing and a problem: supersym-
metry may be broken while the cosmological constant remains small, but we have lost
our rationale for a vanishing, or very small, cosmological constant and fine-tuning raises
again its ugly head.

In the context of brane theories, one may imagine that supersymmetry is only broken
on the brane where quarks, leptons and gauge interactions are localized. In the rest of the
higher-dimensional spacetime, supersymmetry would be a valid symmetry. It should be
noted however that the cosmological constant measured on the brane (the one we observe)
receives contributions both from the bulk vacuum energy ΛB and from the brane tension
σ (brane vacuum energy), e.g. in a 5-dimensional set up:

λ =
1

2M3
5

ΛB +
1

12M6
5

σ2 , (10)

M5 being the 5-dimensional Planck scale. It remains to explain dynamically why the two
contributions cancel.
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Over the last years, there has been an increasing number of indications that the Uni-
verse is presently undergoing accelerated expansion. This appears to be a strong departure
from the standard picture of a matter-dominated Universe. Indeed, the standard equation
for the conservation of energy,

ρ̇ = −3(p+ ρ)H, (11)

allows to derive from the Friedmann equation (3), written in the case of a universe dom-
inated by a component with energy density ρ and pressure p:

ä

a
= −4πGN

3
(ρ+ 3p) . (12)

Obviously, a matter-dominated (p ∼ 0) universe is decelerating. One needs instead a
component with a negative pressure.

A cosmological constant is associated with a contribution to the energy-momentum
tensor as in (7)(8):

T µ
ν = −Λ4δµν = (−ρ, p, p, p) (13)

The associated equation of motion is therefore p = −ρ. It follows from (12) that a
cosmological constant tends to accelerate expansion.

Recent cosmological observation is usually expressed in the plane (ΩM , ΩΛ). It is
certainly remarkable that a very diverse set of data singles out the same region in this
parameter space: ΩM ∼ 0.2 to 0.3 and ΩΛ ∼ 0.7 to 0.8.

This raises a new problem. Since matter and a cosmological constant evolve very dif-
ferently, why should they be of the same order at present times? Indeed, for a component
of equation of state p = wρ, we may rewrite (11) as

ρ̇

ρ
= −3

ȧ

a
(1 + w) . (14)

Thus matter (p ∼ 0) energy density evolves as a−3 whereas a cosmological constant stays
constant, as expected. Why should they be presently of similar magnitude? This is
known as the cosmic coincidence problem. In order to avoid any reference to us (and
hence any anthropic interpretation, see below), we may rephrase the problem as follows.
Why does the vacuum energy starts to dominate at a time tΛ (redshift zΛ ∼ 1) which
almost coincides with the epoch tG (redshift zG ∼ 3 to 5) of galaxy formation?

3 Relaxation mechanisms

From the point of view of high energy physics, it is however difficult to imagine a rationale
for a pure cosmological constant, especially if it is nonzero but small compared to the
typical fundamental scales (electroweak, strong, grand unified or Planck scale). There
should be dynamics associated with this form of energy.

For example, in the context of string models, any dimensionful parameter is expressed
in terms of the fundamental string scale M

S
and of vacuum expectation values of scalar

fields. The physics of the cosmological constant would then the physics of the correspond-
ing scalar fields.
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Indeed, it is difficult to envisage string theory in the context of a true cosmological
constant. The corresponding spacetime is known as de Sitter spacetime and has an event
horizon. This is difficult to reconcile with the S-matrix approach of string theory in
the context of conformal invariance. More precisely, in the S-matrix approach, states are
asymptotically (i.e. at times t→ ±∞) free and interact only at finite times: the S-matrix
element between an incoming set of free states and an outgoing set yields the probability
associated with such a transition. In string theory, the states are strings and a diagram
representing the tree level interaction of two closed strings has the form of a sphere with
4 tubes attached, corresponding to the 2 incoming and 2 outgoing string states. But
conformal invariance imposes that the string world-sheet can be deformed at will: this is
difficult to reconcile with the presence of a horizon and the requirement of asymptotically
free states.

Steven Weinberg [2] has constrained the possible mechanisms for the relaxation of
the cosmological constant by proving the following “no-go” theorem: it is not possible to
obtain a vanishing cosmological constant as a consequence of the equations of motion of
a finite number of fields.

Obviously, Weinberg’s no-go theorem relies on a series of assumptions: Lorentz invari-
ance, finite number of constant fields, possibility of globally redefining these fields...

3.1 Examples

An example of relaxation mechanism is provided by the Brown-Teitelboim mechanism
[3] where the quantum creation of closed membranes leads to a reduction of the vacuum
energy inside. This is easier to understand on a toy model with a single spatial dimension.

Let us thus consider a line and establish along it a constant electric field E0 > 0:
the corresponding (vacuum) energy is E2

0/2. Quantum creation of a pair of ±q-charged
particles (q > 0) leads to the formation of a region (between the two charges) where
the electric field is partially screened to the value E0 − q and thus the vacuum energy
is decreased to the value (E0 − q)2/2. Quantum creation of pairs in the new region will
subsequently decrease the value of the vacuum energy. The process ends in flat space
when the electric field reaches the value E ≤ q/2 because it then becomes insufficient to
separate the pairs created.

In a truly three-dimensional universe, the quantum creation of pairs is replaced by the
quantum creation of membranes and the one-dimensional electric field is replaced by a
tensor field Aµνρ. Tensor fields are typical of string theories. This mechanism has thus
been studied in this context. In order to have the right amount of left-over vacuum energy,
one needs very small membrane charges. It has been proposed that non-perturbative
string effects are responsible of this smallness [4]. Alternatively, such small values appear
more naturally in the presence of multiple tensor fields [5].

There are two potential problems with such a relaxation of the cosmological constant.
First, since the region of small cosmological constant originates from regions with large
vacuum energies, hence exponential expansion, it is virtually empty: matter has to be
produced through some mechanism yet to be specified. The second problem has to do
with the multiplicity of regions with different vacuum energies: why should we be in the
region with the smallest value? Such questions are crying for an anthropic type of answer:
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some regions of spacetime are preferred because they allow the existence of observers.
More generally, the anthropic principle approach can be sketched as follows. We

consider regions of spacetime with different values of tG (time of galaxy formation) and
tΛ, the time when the cosmological constant starts to dominate i.e. when the Universe
enters a de Sitter phase of exponential expansion. Clearly galaxy formation must precede
this phase otherwise no observer (similar to us) would be able to witness it. Thus tG ≤ tΛ.
On the other hand, regions with tΛ � tG have not yet undergone any de Sitter phase of
reacceleration and are thus “phase-space suppressed” compared with regions with tΛ ∼ tG.
Hence the regions favoured have tΛ

>∼ tG and thus ρΛ ∼ ρM .

3.2 Brane universes and self-tuning

In a braneworld set up where matter is localized on a 3-brane (i.e. a surface with 3
spatial dimensions) plunged into a 5-dimensional spacetime, we have seen in (10) that
the cosmological constant receives contributions both from the bulk vacuum energy ΛB
and from the brane vacuum energy or tension σ. Requiring a vanishing (or very small)
cosmological constant requires a severe fine-tuning between the string tension and the
bulk vacuum energy (known as the Randall-Sundrum [6] condition).

In the self-tuning scenario [7, 8], one introduces a bulk scalar field φ whose confor-
mal coupling to the matter on the brane induces a relaxation mechanism which ensures
Minkowski spacetime irrespective of the brane vacuum energy σ.

More precisely, one starts with the 5-dimensional action:

S = Sbk + Sbr =M3
5

∫
d5x

√
|g5|

[
1

2
R(5) − 3

2
∂mφ ∂mφ− 3V(φ)

]

+
∫
brane

d4x
√
|g4| f 2(φ) (−σ) , (15)

and one looks for static spatially flat solutions to the classical equations of motion, valid for
any value of the brane tension. For example, in the case of vanishing potential V(Φ) = 0
and conformal coupling of the form f 2(φ) = Ce∓φ, one finds as solution a warped 5-
dimensional metric

ds2 = e2A(y)ηµνdx
µdxν + dy2 , (16)

A(y) =
1

2
ln

(
1− |y|

yc

)
, φ(y) = φ0 ± ln

(
1− |y|

yc

)
. (17)

We note the presence of a naked singularity at |y| = yc > 0.
The presence of this naked singularity has been associated with some hidden fine tuning

associated with the presence of the singularity [9]. Indeed, one may cure the singularity
by adding a second brane but the content of the second brane is then fine-tuned.

Alternatively, one may include the one-loop corrections to gravity in the bulk and see
whether this smooths the singularity out [10]. The starting point is now the action:

Sbulk =
M3

5

2

∫
d4x dy

√−g
{
R − ζ(∇φ)2 + αe−ζφ

[
LGB + c2(∇φ)4

]
− 2ΛBe

ζφ
}

Sbrane = −
∫
d4x

√
|g4| σeχ(φ) (18)
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with the Gauss-Bonnet combination LGB = R2 − 4RabR
ab + RabcdRabcd. There indeed

exist solutions with no naked singularity at finite distance from the brane:

A(y) = A0 + x ln

(
1 +

|y|
yc

)
, φ(y) = φ0 − 2

ζ
ln

(
1 +

|y|
yc

,

)
(19)

where x is a number which is a given function of αΛB. Gravity is localized on the
brane for x < −1/2 as can be checked by computing the Planck mass of the effective
4-dimensional theory. However, one finds that an unwanted fine tuning among the pa-
rameters reappears. Hence the presence/absence of fine tuning seems to be correlated
with the absence/presence of naked singularities in the bulk.

Another possibility is to try to hide the singularity behind a horizon, or in other
words to replace the bulk scalar field by a black hole configuration in the bulk. Indeed,
in a (bulk) black hole background, it is possible to find flat brane solutions without
naked singularities, with enough parameters to avoid fine tuning of the theory [11]. For
example, a charged (AdS-Reissner-Nordstrom) black hole has a mass and a charge: this
gives enough parameters so that they can be tuned to take into account variations of the
brane vacuum energy.

4 Dark energy

In this subsection, we will take a slightly different route. We assume that some unknown
mechanism relaxes the vacuum energy to zero or to a very small value. We then introduce
some new dynamical component which, in order to account for the present observations
has negative pressure. and thus an equation of state1:

p = wρ, w < 0. (20)

Experimental data may constrain such a dynamical component, referred to in the
literature as dark energy, just as it did with the cosmological constant. For example, in
a spatially flat Universe with only matter and an unknown component X with equation
of state pX = wXρX , one obtains from (12) with ρ = ρM + ρX , p = wXρX the following
form for the deceleration parameter at present time t0

q0 ≡ − äa

ȧ2

∣∣∣∣
t0

=
ΩM

2
+ (1 + 3wX)

ΩX

2
, (21)

where ΩX = ρX/ρc. Supernovae results give a constraint on the parameter wX .
A particularly interesting candidate in the context of fundamental theories is a scalar2

field φ slowly evolving in its potential V (φ). Indeed, the corresponding energy density
and pressure are, for a minimally coupled scalar field,

ρφ =
1

2
φ̇2 + V (φ) , pφ =

1

2
φ̇2 − V (φ) , wφ ≡ pφ

ρφ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (22)

1We recall that non-relativistic matter (dust) has an equation of state p ∼ 0 whereas p = ρ/3 corre-
sponds to radiation.

2A vector field or any field which is not a Lorentz scalar must have settled down to a vanishing value.
Otherwise, Lorentz invariance would be spontaneously broken.
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If the kinetic energy is subdominant (φ̇2/2 � V (φ)), we clearly obtain −1 ≤ wφ ≤ 0.
We will see below that the scalar field must be extremely light. We therefore have two

possible situations:

• a scalar potential slowly decreasing to zero as φ goes to infinity [12, 13, 14]. This is
often referred to as quintessence or runaway quintessence.

• a very light field (pseudo-Goldstone boson) which is presently relaxing to its vacuum
state [15].

In both cases one is relaxing to a position where the vacuum energy is zero. This is
associated with our assumption that some unknown mechanism wipes the cosmological
constant out. We discuss the two cases in turn.

Runaway quintessence

A runaway potential is frequently present in models where supersymmetry is dynam-
ically broken. We have seen that supersymmetric theories are characterized by a scalar
potential with many flat directions, i.e. directions φ in field space for which the poten-
tial vanishes. The corresponding degeneracy is lifted through dynamical supersymmetry
breaking. In some instances (dilaton or compactification radius), the field expectation
value < φ > actually provides the value of the strong interaction coupling. Then at
infinite φ value, the coupling effectively goes to zero together with the supersymmetry
breaking effects and the flat direction is restored: the potential decreases monotonically
to zero as φ goes to infinity.

Let us take the example of supersymmetry breaking by gaugino condensation in ef-
fective superstring theories. The value g0 of the gauge coupling at the string scale M

S
is

provided by the vacuum expectation value of the dilaton field s (taken to be dimensionless
by dividing by m

P
) present among the massless string modes: g2

0 =< s >−1. If the gauge
group has a one-loop beta function coefficient b > 0, then the running gauge coupling
becomes strong at the scale

Λ ∼ M
S
e−8π2/(bg20) =M

S
e−8π2s/b . (23)

At this scale, the gaugino fields are expected to condense. Through dimensional analysis,
the gaugino condensate < λ̄λ > is expected to be of order Λ3. Terms quadratic in the
gaugino fields thus yield in the effective theory below condensation scale a potential for
the dilaton:

V ∼
∣∣∣< λ̄λ >

∣∣∣2 ∝ e−48π2s/b. (24)

The s-dependence of the potential is of course more complicated and one usually looks
for stable minima with vanishing cosmological constant. But the behavior (23) is charac-
teristic of the large s region and provides a potential slopping down to zero at infinity as
required in the quintessence approach. A similar behavior is observed for moduli fields
whose vev describes the radius of the compact manifolds which appear from the compact-
ification from 10 or 11 dimensions to 4 in superstring theories.

On general grounds, one considers the following action

S =
∫
d4x

√
g

[
−m

2
P

2
R +

1

2
∂µφ∂µφ− V (φ)

]
, (25)
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which describes a real scalar field φ minimally coupled to gravity with self-interactions of
which are described by the potential V (φ).

The energy density and pressure stored in the scalar field are given by (22). One
assumes that the background (matter and radiation) energy density ρB and pressure pB
obey a standard equation of state

pB = wBρB. (26)

If one neglects the spatial curvature (k ∼ 0), the equation of motion for φ simply reads

φ̈+ 3Hφ̇ = −dV
dφ

or ρ̇φ = −3Hφ̇2 , (27)

with

H2 =
1

3m2
P

(ρB + ρφ) . (28)

We are looking for scaling solutions i.e. solutions where the φ energy density scales
as a power of the cosmic scale factor: ρφ ∝ a−3(1+wφ) as one obtains from (27). If one can
neglect the background energy ρB, then (28) yields a simple differential equation for a(t)
which is solved as:

a ∝ t2/[3(1+wφ)]. (29)

One obtains for a potential V (φ) = V0e
−λφ/m

P , where V0 is a positive constant,

φ = φ0 +
2

λ
m

P
ln(t/t0) and wφ =

λ2

3
− 1 . (30)

It is clear from (30) that, for λ sufficiently small, the field φ can play the role of quintessence.
We note that, even if we started with a small value φ0, φ reaches a value of order m

P
.

But the successes of the standard big-bang scenario indicate that clearly ρφ cannot
have always dominated: it must have emerged from the background energy density ρB. If
λ2 > 3(1 + wB), which seems to be favored in the context of strings, the global attractor
turns out to be a scaling solution [12, 16, 17] with the following properties:

Ωφ ≡ ρφ
ρφ + ρB

=
3

λ2
(1 + wB) , wφ = wB . (31)

The second equation clearly indicates that this does not correspond to a dark energy
solution (20).

Ways to obtain a quintessence component have been proposed however. Let us sketch
some of them in turn.

One is the notion of tracker field [18]. This idea also rests on the existence of scaling
solutions of the equations of motion which play the role of late time attractors, as illus-
trated above. An example is provided by a scalar field described by the action (25) with
a potential

V (φ) = λ
Λ4+α

φα
(32)

with α > 0. In the case where the background density dominates, one finds an attractor
scaling solution [13, 19] φ ∝ a3(1+wB)/(2+α), ρφ ∝ a−3α(1+wB)/(2+α). Thus ρφ decreases at a
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slower rate than the background density (ρB ∝ a−3(1+wB)) and tracks it until it becomes
of the same order at a given value aQ. We thus have:

φ

m
P

∼
(
a

aQ

)3(1+wB)/(2+α)

,
ρφ
ρB

∼
(
a

aQ

)6(1+wB)/(2+α)

. (33)

One finds

wφ = −1 +
α(1 + wB)

2 + α
. (34)

Shortly after φ has reached for a = aQ a value of order mP , it satisfies the standard
slow roll conditions (m

P
|V ′/V | � 1, m2

P
|V ′′/V | � 1) and therefore (34) provides a good

approximation to the present value of wφ. Thus, at the end of the matter-dominated era,
this field may provide the quintessence component that we are looking for.

Two features are interesting in this respect. One is that this scaling solution is reached
for rather general initial conditions, i.e. whether ρφ starts of the same order or much
smaller than the background energy density [18]. Regarding the cosmic coincidence prob-
lem, it can be rephrased here as follows (since φ is of order m

P
in this scenario): why

is V (m
P
) of the order of the critical energy density ρc? It is thus the scale Λ which

determines the time when the scalar field starts to emerge and the universe expansion
reaccelerates. Indeed, using (33), the constraint reads:

Λ ∼
(
H2

0m
2+α
P

)1/(4+α)
. (35)

We may note that this gives for α = 2, Λ ∼ 10 MeV, not such an atypical scale for high
energy physics.

A model [20] has been proposed which goes one step further: the dynamical compo-
nent, a scalar field, is called k-essence and the model is based on the property observed in
string models that scalar kinetic terms may have a non-trivial structure. Tracking occurs
only in the radiation-dominated era; a new attractor solution where quintessence acts as
a cosmological constant is activated by the onset of matter domination.

Models of dynamical supersymmetry breaking easily provide a model of the tracker
field type just discussed [21]. Let us consider supersymmetric QCD with gauge group
SU(Nc) and Nf < Nc flavors, i.e. Nf quarks Qg (resp. antiquarks Q̄g), g = 1 · · ·Nf , in
the fundamental Nc (resp. anti-fundamental N̄c) of SU(Nc). At the scale of dynamical
symmetry breaking Λ where the gauge coupling becomes strong, boundstates of the meson
type form: Mf

g = QfQ̄
g. The dynamics is described by a superpotential which can be

computed non-perturbatively using standard methods:

W = (Nc −Nf )
Λ(3Nc−Nf )/(Nc−Nf )

(det M)1/(Nc−Nf )
. (36)

Such a superpotential has been used in the past but with the addition of a mass or
interaction term (i.e. a positive power ofM) in order to stabilize the condensate. One does
not wish to do that here if M is to be interpreted as a runaway quintessence component.
For illustration purpose, let us consider a condensate diagonal in flavor space: Mf

g ≡ φ2δgf .
Then the potential for φ has the form (32), with α = 2(Nc +Nf)/(Nc −Nf). Thus,

wφ = −1 +
Nc +Nf

2Nc
(1 + wB), (37)
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which clearly indicates that the meson condensate is a potential candidate for a quintessence
component.

One may note that, in the tracker model, when φ reaches values of orderm
P
, it satisfies

the slow roll conditions of an inflation model. The last possibility that I will discuss goes
in this direction one step further. It is known under several names: deflation [22], kination
[23], quintessential inflation [24]. It is based on the remark that, if a field φ is to provide a
dynamical cosmological constant under the form of quintessence, it is a good candidate to
account for an inflationary era where the evolution is dominated by the vacuum energy.
In other words, are the quintessence component and the inflaton the same unique field?

In this kind of scenario, inflation (where the energy density of the Universe is dom-
inated by the φ field potential energy) is followed by reheating where matter-radiation
is created by gravitational coupling during an era where the evolution is driven by the
φ field kinetic energy (which decreases as a−6). Since matter-radiation energy density
is decreasing more slowly, this turns into a radiation-dominated era until the φ energy
density eventually emerges as in the quintessence scenarios described above.

Quintessential problems

However appealing, the quintessence idea is difficult to implement in the context of
realistic models [25, 26]. The main problem lies in the fact that the quintessence field
must be extremely weakly coupled to ordinary matter. This problem can take several
forms :

• we have assumed until now that the quintessence potential monotonically decreases
to zero at infinity. In realistic cases, this is difficult to achieve because the couplings of the
field to ordinary matter generate higher order corrections that are increasing with larger
field values, unless forbidden by a symmetry argument. For example, in the case of the
potential (32), the generation of a correction term λd m

4−d
P

φd puts in jeopardy the slowroll
constraints on the quintessence field, unless very stringent constraints are imposed on the
coupling λd. But one typically expects from supersymmetry breaking λd ∼ M4

SB/m
4
P

where MSB is the supersymmetry breaking scale.
Similarly, because the vev of φ is of order m

P
, one must take into account the full

supergravity corrections. One may then argue [27] that this could put in jeopardy the
positive definiteness of the scalar potential, a key property of the quintessence potential.
This may point towards models where < W >= 0 (but not its derivatives) or to no-scale
type models.

• the quintessence field must be very light. If we return to our example of supersym-
metric QCD in (32), V ′′(mP ) provides an order of magnitude for the mass-squared of the
quintessence component:

mφ ∼ Λ
(

Λ

mP

)1+α/2

∼ H0 ∼ 10−33 eV. (38)

using (35). This might argue for a pseudo-Goldstone boson nature of the scalar field that
plays the rôle of quintessence. This field must in any case be very weakly coupled to
matter; otherwise its exchange would generate observable long range forces. Eötvös-type
experiments put very severe constraints on such couplings.
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Again, for the case of supersymmetric QCD, higher order corrections to the Kähler
potential of the type

κ(φi, φ
†
j)

[
βij

(
Q†Q
m2
P

)
+ β̄ij

(
Q̄Q̄†

m2
P

)]
(39)

will generate couplings of order 1 to the standard matter fields φi, φ
†
j since < Q > is of

order m
P
[28].

• it is difficult to find a symmetry that would prevent any coupling of the form
β(φ/mP )

nF µνFµν to the gauge field kinetic term. Since the quintessence behavior is
associated with time-dependent values of the field of order mP , this would generate,
in the absence of fine tuning, corrections of order one to the gauge coupling. But the
time dependence of the fine structure constant for example is very strongly constrained:
|α̇/α| < 5× 10−17yr−1. This yields a limit [25]:

|β| ≤ 10−6mPH0

< φ̇ >
, (40)

where < φ̇ > is the average over the last 2× 109 years.

Pseudo-Goldstone boson

There exists a class of models [15] very close in spirit to the case of runaway quintessence:
they correspond to a situation where a scalar field has not yet reached its stable ground-
state and is still evolving in its potential.

More specifically, let us consider a potential of the form:

V (φ) = M4v

(
φ

f

)
, (41)

where M is the overall scale, f is the vacuum expectation value < φ > and the function
v is expected to have coefficients of order one. If we want the potential energy of the field
(assumed to be close to its vev f) to give a substantial fraction of the energy density at
present time, we must set

M4 ∼ ρc ∼ H2
0m

2
P . (42)

However, requiring that the evolution of the field φ around its minimum has been over-
damped by the expansion of the Universe until recently imposes

m2
φ =

1

2
V ′′(f) ∼ M4

f 2
≤ H2

0 . (43)

Let us note that this is again one of the slowroll conditions familiar to the inflation
scenarios.

From (42) and (43), we conclude that f is of order m
P
(as the value of the field φ in

runaway quintessence) and that M ∼ 10−3 eV (not surprisingly, this is the scale Λ typical
of the cosmological constant, see (9)). As we have seen, the field φ must be very light:
mφ ∼ h0 × 10−60mP ∼ h0 × 10−33 eV. Such a small value is only natural in the context
of an approximate symmetry: the field φ is then a pseudo-Goldstone boson. A typical
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example of such a field is provided by the string axion field. In this case, the potential
simply reads:

V (φ) = M4 [1 + cos(φ/f)] . (44)

Coupling dark energy with dark matter?

Even if quintessence has to be very weakly coupled with ordinary matter, the constraint
may not be so strong with dark matter. Models of such coupled quintessence have been
proposed [29]. They lead to violations of the equivalence principle and they predict an
early acceleration (at z > 1).

All the preceding shows that there is extreme fine tuning in the couplings of the
quintessence field to matter, unless they are forbidden by some symmetry. This is some-
what reminiscent of the fine tuning associated with the cosmological constant. In fact, the
quintessence solution does not claim to solve the cosmological constant (vacuum energy)
problem described above. If we take the example of a supersymmetric theory, the dy-
namical cosmological constant provided by the quintessence component clearly does not
provide enough amount of supersymmetry breaking to account for the mass difference
between scalars (sfermions) and fermions (quarks and leptons): at least 100 GeV. There
must be other sources of supersymmetry breaking and one must fine tune the parameters
of the theory in order not to generate a vacuum energy that would completely drown ρφ.

However, the quintessence solution shows that, once this fundamental problem is
solved, one can find explicit fundamental models that effectively provide the small amount
of cosmological constant that seems required by experimental data.
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