CDM in Supersymmetric Models

Relic Density in the CMSSM
Phenomenological Constraints
Higgs masses, b→s γ, g-2
Relaxing the CMSSM
Prospects for Detection

with: Ellis, Falk, Ferstl, Ganis, Santoso, Srednicki

SUSY Dark Matter

```
MSSM and R-Parity ->
   Stable DM candidate
1) Neutralinos
\widetilde{\chi}_{\iota} = \alpha_{\iota} \widetilde{B} + \beta_{\iota} \widetilde{W} + \gamma_{\iota} \widetilde{H}_{1} + \delta_{\iota} \widetilde{H}_{2}
2) Sneutrinos
   Excluded (unless add L-violating terms)
3) Other:
   Axinos, Gravitinos, etc
```

mass matrix

$$(\tilde{B}, \tilde{W}^{3}, \tilde{H}_{1}^{0}, \tilde{H}_{2}^{0}) \begin{pmatrix} M_{1} & 0 & \frac{-g_{1}v_{1}}{\sqrt{2}} & \frac{g_{1}v_{2}}{\sqrt{2}} \\ 0 & M_{2} & \frac{g_{2}v_{1}}{\sqrt{2}} & \frac{-g_{2}v_{2}}{\sqrt{2}} \\ \frac{-g_{1}v_{1}}{\sqrt{2}} & \frac{g_{2}v_{1}}{\sqrt{2}} & 0 & -\boldsymbol{\mu} \\ \frac{g_{1}v_{2}}{\sqrt{2}} & \frac{-g_{2}v_{2}}{\sqrt{2}} & -\boldsymbol{\mu} & 0 \end{pmatrix} \begin{pmatrix} \tilde{B} \\ \tilde{W}^{3} \\ \tilde{H}_{1}^{0} \\ \tilde{H}_{2}^{0} \end{pmatrix}$$

Depends on $M_{1/2}$, μ , and tan β Assume $M_1 = M_2 = M_3 = M_{1/2}$ @ GUT Scale

Also Relic Density Depends on m_0 , m_A

Parameters

Higgs mixing mass: μ Ratio of Higgs vevs: tan β Gaugino masses: M_i Soft scalar masses: m_0

Bi and Trilinear Terms: B and A_i Phases: θ_{μ} , θ_{A}

Boundary conditions

• Input parameters: μ , m_1 , m_2 , B. predict M_Z , tan β , m_A

CMSSM conditions

 Instead CMSSM: Input parameters: M_Z, m₁, m₂, tan β

 $(m_1 = m_2 = m_0)$ predict μ , B, m_A

CMSSM Spectra

Unification to rich spectrum + EWSB

Falk

The Relic Density

How Much Dark Matter

Upper limit to Ωh^2 age of the Universe (t > 12 Gyr) allows one to set an upper limit $\Omega h^2 < 0.3$

Lower limit to Ω h²

Structure formation requires at least $\Omega h^2 > 0.1$ in dark matter

But this is not a strict constraint on <u>SUSY</u> dark matter

SUSY Benchmarks

Battaglia et al

Bulk Region of low $m_{1/2}$, m_0

Upper limit to $m_{1/2}$ ~ 450 GeV moved up to ~ 1400 GeV

 $m_{\chi} \approx 0.4 m_{1/2}$

Ellis, Falk, Olive, Srednicki

Co-annihilation

Often, the LSP is nearly degenerate with another SUSY sparticle.

 χ, χ', χ^{\pm} nearly degenerate when M₂>> μ Enhanced annihilation

lower Ωh^2

Greist + Seckel Mizuta + Yamaguchi

Also, in CMSSM, $\chi - \tilde{\tau}$ or $\chi - \tilde{t}$

EFOS Boehm, Djouadi, Drees Ellis, Olive, Santoso

greatly affects upper limits to LSP.

Co-annihilation Region of high $m_{1/2}$, low m_0

Ellis, Falk, Olive, Srednicki

χ - \tilde{t} co-annihilation

Region of high A_0

Ellis, Olive, Santoso

The CMSSM at large tan β

- Increased sensitivity to bottom quark mass radiative corrections
- Rapid annihilation through s-channel A and H exchange due to:
 - $-m_{A,H}$ decreases as tan β increases
 - and $2m_{\chi} \sim m_{A,H}$ for a wide range in $m_{1/2}$
 - -b quark coupling enhanced by tan β

Drees and Nojiri Baer etal. Ellis, Falk, Ganis, Olive, Srednicki

Funnel region at high tan β

EFGOS

'Focus Point' Region

When $m_0 \gg m_{1/2}$, the LSP becomes more Higgsino-like and rapid annihilation (through Z exchange) drives the density down.

Feng, Matchev, Wilczek

Constraints

• Chargino mass limit

 $M_{\chi^{\pm}} \ge 104 \text{ GeV}$ Constrains (M₂ and μ)/ m_{1/2}

• Higgs mass limit

$$\begin{split} M_{\rm H} &\geq 114 \; GeV \\ \text{Constrains (m}_{\rm A}, \, M_2, \, A) / \; m_{1/2} \\ \text{particularly at low tan } \beta \end{split}$$

• b to s γ

Constrains (m_A)/ m_{1/2} at high tan β and $\mu < 0$

• Also sfermion mass limits from LEP and CDF

 $m_f \ge 99 \text{ GeV (roughly)}$ $\chi \text{ is the LSP}$

Another view

Boundary conditions

• Input parameters: μ , m_1 , m_2 , B. predict M_Z , tan β , m_A

CMSSM conditions

- Instead CMSSM: Input parameters: M_Z , m_1 , m_2 , tan β $(m_1 = m_2 = m_0)$ predict μ , B, m_A Relaxing CMSSM conditions
- Or instead NUHM: Input parameters: M_Z, μ, m_A, tan β

predict m₁, m₂, B Ellis, KO, Santoso

The $m_A - \mu$ plane

+ CMSSM value

The M_2 - μ plane

+ CMSSM value

The $m_0 - m_{1/2}$ plane

+ CMSSM value

Have future accelerators been saved by g-2? • Original results from Recent BNL E821 $\delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 43 \pm 16 \times 10^{-10}$

• Strong correlations between a_{μ} and $\mu = \mu < 0$ excluded.

Chattopadhyay, Nath Ellis, Nanopoulos, KO

- Theoretical corrections $\delta a_{\mu} = 26 \pm 16 \times 10^{-10}$ $- \mu >$
 - $\mu > 0$ strongly favored - Small m₀ m_{1/2} excluded

Ellis, KO, Santoso

Effects of g-2

Note: $\mu < 0$ excluded

Large m_{1/2}, m₀ excluded

Labels show benchmark points

> From: Battaglia etal

800-

700-

600-

500-

400-

300-

200-

100-

1000-

 $m_0~(GeV)$

0-

100

m₀ (GeV)

Effects of weaker g-2

Note: $\mu < 0$ still Strongly constrained

Ellis, KAO, Santoso

Direct Detection

Eastic scattering cross sections for χp

Use only parameters which satify accelerator bounds and relic denisty Results: low cross sections <10⁻³ pb spin <10⁻⁷ pb scalar MSSM allows higher cross sections at higher m_χ + $\alpha_{3i} \overline{\chi} \chi \overline{q}_i q_i + \alpha_{4i} \overline{\chi} \gamma^5 \chi \overline{q}_i \gamma^5 q_i$

+ $\alpha_{5i} \overline{\chi} \chi \overline{q}_i \gamma^5 q_i + \alpha_{6i} \overline{\chi} \gamma^5 \chi \overline{q}_i q_i$ The terms involving- α_{1i} ,- α_{4i} ,- α_{5i} ,-and- α_{6i} lead to velocity dependent elastic cross sections.

Remaining terms are:

the spin dependent coefficient

 α_{2i}

 α_{3i}

and-scalar-coefficient-

Contributions to α_2 : Spin-Dependent crosssection

- Through light squark exchange
 - Dominant for binos
- Through Z exchange
 - Requires a strong Higgsino component

Contributions to α_3 : Spin-Independent crosssection

- Through light squark exchange
 - Dominant for binos
- Through Higgs exchange
 - Requires some Higgsino component

Note cancellation When $\mu < 0$

3000

800-

700-

600-

500-

400-

300-

200-

100-

0-

1000-

m₀ (GeV)

Ellis Ferstl, KO

Detectability of Benchmark points

Feng etal

Summary

• Accelerator Constraints:

Push towards larger values of m_{χ} . (Trend may be halted by future g-2 results.)

CMSSM

- Spin-Dependent cross sections:
 - $\sigma_2 < 10^{-5} \text{ pb}$ (>3 x 10 ⁻⁷ pb if g-2) *
 - But this is far below current sensitivites.
- Scalar cross sections:

 $\sigma_3 < 10^{-7} \text{ pb}$ (> 10⁻⁹ pb if g-2) *

- Perhaps within experimental reach.

* Old g-2

MSSM

 While higher cross-sections are possible (with suitable choices of mass scales), (up to a few x 10⁻⁷ pb for scalar cross sections
 maybe up to 10⁻⁶ pb with nuclear uncertainties) much lower cross sections are also possible.

Indirect Detection

• Great for v's, (perhaps also for exotic relics), but remains a challenge for neutralinos in the CMSSM