GRAND UNIFICATION

IN

HIGHER DIMENSIONS.

Lawrence Hall

UC Berkeley
Workshops on Grand Unification

1990

Susy Conferences

Evidence for weak scale susy

Evidence for grand unification

\[\alpha_i \]

1. WHAT IS THE PHYSICS AT UNIFICATION?

2. HOW CAN IT BE TESTED?
(I) FEATURES OF 4D GUTs

(II) NEW VIEWPOINT FOR UNIFICATION
 hep-ph/0103125

(III) A MINIMAL MODEL
 hep-ph/0111068

(IV) EXPERIMENTAL SIGNALS
 hep-ph/0205067

with Yasunori Nomura.
THE DICHOTOMY

UNIFICATION FITS

- Light neutrinos
 -νe (Yukawa)

ABHORS UNIFICATION

- Light Higgs
 - h

Numerical Prediction

Quark-lepton masses

RECONCILIATION?
Predictions of α_s vs $\alpha_s (M_Z)$

α_s, α_s^{GUT}, α_s^{SGUT}

Exp.

Susy

Good
But not perfect

What is this telling us?

\[\text{GUT threshold corr.: } (S+T, \text{ unit by unit}) \]

\[\text{Estimate of supersymmetry threshold corr.: } \]
Minimal 4D supersymmetry, SU(5):

- No understanding of why h_2 light.
- Excluded by experimental limit on Z'

One is forced to invent mechanisms

... a better way forward?
A NEW PHYSICS OF UNIFICATION

OLD TOOLS

A NEW THEORY FROM $10^5 - 10^7$ GeV
Higher Dimensions

\[x \rightarrow (x, y) \]

Low energy 3-2-1

SU(3) Bulk

3-2-1 Boundary

Suppress \(x \):

Matter Q.N.

\[\frac{3}{2} \]

Higgs Q.N.

\[\frac{5}{2} \]

\[p \text{ decay} \]

\[\alpha_s \text{ prediction} \]
II.2 ORIGIN OF 3-2-1 POINT DEF

RESTRICTED GAUGE SYMMETRY FROM BOUNDARY CONDITIONS: FIELD THEORY IN A BOX:

\[\text{SU}(5) \rightarrow 3-2-1 \]

LOCAL EXPLICIT SU(5) BREAKING

A NEW CLASS OF PREDICTIVE GAUGE THEORIES.

- SANE UNITARITY BEHAVIOUR AS \(\text{SU}(5) \)
- NO NEED TO BREAK THE UNIFIED GAUGE SYMMETRY
The Setup

- Assume
 Fixed geometry
 Boundary conditions

- Introduce
 $\phi(y)$ & general action

"Machine"

$\phi(y)$ \rightarrow \[3.2-1\] \rightarrow \[M_s, M_c\]

Geometry / B.C. \rightarrow KK Structure

Structure of Bulk \rightarrow Experiment

- No need for mass terms or spontaneous symmetry breaking
II.

Consequences for:

- Gauge coupling unification
- Why h_2 light
- p decay
- Quark-lepton mass ratios.

In each case the situation is quite unlike 4D:

Higher Dim GUTs \neq 4D GUTs
Consequences for Gauge Coupling Unification

Cutoff for 4+1d GUT

$\frac{1}{R}$ (Could be several)

G

$\frac{1}{g_{4+1d}^2} F_{4+1d}^2$

Subspaces with restricted gauge symmetry:

$\frac{1}{g_i^2} \frac{F_c^2}{g_{4+1d}^2}$

Say:

$\frac{1}{g_{i}^2} = \frac{R_{d}}{g_{4+1d}^2} + \frac{R_{d'}}{g_{i}^2}$

NO GAUGE COUP. UNIF!
Radiative CORR.

4D viewpoint

\[x \]

3

2

1

usual logs.

\[M_c \]

\[M_s \]

power law
non-universal
sensitive to \(M_s \)

4+1d GUT with restricted gauge symmetry

\[\Rightarrow \]

Explicit local breaking of G

\[\Rightarrow \]

Unif. \(\alpha_i \)

Lost
NEW PHYSICS OF UNIFICATION

Hall, Nomura (01)

\[\frac{1}{g^2} = \frac{R^d}{g_{4+d}^2} + \frac{R^{d'}}{g'^2} \]

1. Large vol. of bulk

\[RM_S = \frac{M_S}{M_C} \Rightarrow 1 \]

\[M_S \atop \text{AT} \atop \text{CLOSE TO} \atop \text{STRING COUPLING} \]

2. Local breaking to 3-2-1 at points

Relative running above \(M_c \) is log

Sensitivity to physics at \(M_S \) is \(\frac{1}{\alpha} \)
How can 2 stage uniF. be predicTive

\[
\frac{1}{\alpha_s(M_Z)} = b_s \ln \frac{M_c}{M_Z} + b_k \ln \frac{N_s}{N_c} + \frac{1}{\alpha_s}
\]

\[
\frac{M_s}{M_c} \text{ determined by strong coupling:}
\]

\[
\frac{C \frac{g^2(M_c)}{16 \pi^2} \left(\frac{M_s}{M_c} \right)^d}{ \sim 1}
\]

\[
\alpha_s = \alpha_s(d, \text{ B.C., } \Phi(y))
\]
Split Multiplets: The light h_2

The "machine" automatically creates split multiplets.

$$H(x,y) \rightarrow \begin{array}{c} G \\ 3-2-1 \end{array} \rightarrow M_c$$

Not New!

Candelas, Horowitz, Strominger, Witten (85)
Dixon, Harvey, Vafa, Witten (85)
Ibanez, Kim, Nilles, Quevedo (87)

Kawamura (00)

\[SU(5)\]

\[3-2-1\]
Study masses for H_3:

$\mathcal{L} = H_3 \gamma_2 H_3^c \rightarrow H_3 \frac{n}{R} H_3^c, \quad n \neq 0$

$N=2$ partner

No coupling by R symmetry

$d=5$ Proton Decay

$d=4,5$ absent by sym.

$d=6$

$M_X = M_c = ?$
Quark-Lepton Mass Relations

- Depends on location:
 - Yukawas in 4d
 \[S^d (\bar{y} - \bar{y}_0) \]
 - \[\psi_1, \psi_2 H \]

- \[m_{12} \leq \frac{1}{\sqrt{v_1}}, \frac{1}{\sqrt{v_2}} \]
 - if both touch \(\bar{y}_0 \)

- Heaviest fermions live in 4D & have unified mass rel. (if away from...)

- Lighter fermions live in bulk & don't have unified mass rel. (if touch...)

321
III

The Minimal Model

Conceptual framework

Calculable, predictive theories
Seek: \(\alpha_5(\text{bulk, B.C., G, H}) \to 0.117 \pm 0.002 \) (Exp. at \(M_2 \))

Recall: \(\alpha_5^{\text{SGUT}} = 0.130 \)

Find:

\[d < 3 \]

H in bulk (not part of \(V \))

\[S \alpha_5 = -\frac{1}{2\pi} \frac{\alpha_5^2}{7m} \ln \frac{M_5}{M_c} \]

\[\begin{cases} T^{2/2m} \\ or \ m = 2 \end{cases} \]

Best if:

\[d = 1 \Rightarrow \begin{cases} \frac{M_5}{M_c} = 200 \\ G = SU(5) \end{cases} \]

Simplest Model is selected over a large energy interval.

\[\begin{array}{c}
M_5 \quad 10^{17} \text{ GeV} \\
5 \quad 3-2-1 \\
M_c \quad 5 \times 10^{14} \text{ GeV}
\end{array} \]
THE α_s PREDICTION

$\alpha_s(M_Z)$

- α_s^GUT
- α_s^{SGUT}
- α_s^{KK}
- α_s^{exp}

- SUSY LOG
- KK LOG

\Box uncertainty from non-log corr. at high scale

\Box uncertainties from susy scale

- 5D Theory with large M_s/M_c is best fit by
- Other theories not excluded
The KK Modes

\[\mathfrak{su}(5) \rightarrow \mathbb{3} - \mathbb{2} - \mathbb{1} \]

\[V + \Sigma \]

\[H + H^c \]

\[m_{\text{KK}} \]

\[\frac{3}{R} \]

\[\frac{2}{R} \]

\[\frac{1}{R} \]

\[(++, +-, -, -) \]

\[V_{321}, V_x, \Sigma_x, \Sigma_{321} \]

\[h_2, H_3, H_3^c, h_2^c \]

cf Kawamura (2000)
MATTER LOCATION

Boundary Matter

\[S(y) \{ TTH + TFH \} \]

Bulk Matter

\[S(y) \{ TTH + TT'H + \ldots \} \]
\[\{ TFH + T'FH + \ldots \} \]

Unified

\[T, F \]

Non-Unified

\[T(0, e) \]
\[T'(q) \]
\[F(l) \]
\[F'(d) \]

<table>
<thead>
<tr>
<th>Boundary</th>
<th>(\frac{1}{R^{1/2}})</th>
<th>SU(5) REL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>(\frac{1}{R^{3/2}})</td>
<td>NO REL.</td>
</tr>
</tbody>
</table>

\(T_3 \) must be on boundary

\(F_3 \) on boundary for \(b/c \)

*Hall, Nomura ph/04.03
Hebecker, Marsh-Russell ph/01.06*
BOUNDARY INTERACTIONS

4D, N=1 allows:

FH, \bar{A}H NO
TTH, TF\bar{H} YES
TFF NO
TTTF NO

N=2 possesses continuous R sym.

eg \left[\begin{array}{c}
H \\
H^c
\end{array} \right]_F
\begin{array}{c}
(0) \\
(2)
\end{array}

Extend to boundary interactions:

T^{(1)} F^{(1)} H^{(0)} \bar{A}^{(0)} H^c^{(2)} \bar{H}^c^{(2)}

Complete sol. to

- \Delta B, \Delta L \neq 0 \text{ at } d=4,5
- h_2 \text{ massless}
IV EXPERIMENTAL SIGNALS

- $d=6$ p decay

- Theories of quark + lepton masses.

 Hall, March-Russell, Okui, Smith, ph/0108161
 Hedges, March-Russell, ph/0205143

 Talk by John March-Russell

If supersymmetry breaking has high messenger scale

- Superpartner spectrum

- Lepton flavor violation
\[d = 6 \] PROTON DECAY

1. \[M_x = M_c \]

2. \[\text{can give} \quad p \rightarrow e^+ \pi^0 \]

3. For large \(\frac{M_s}{M_c} \), \(T_1 \) must be in bulk

\[\frac{T_2}{T_1(u,e)} = 321 \]

\[p \rightarrow K^+ \pi^0 \]

via CKM mixing.

Nomura ph/0108170

Hebecker, Marsh-Russell ph/0204037
Boundary Gauge Interactions

\[T_1(u, e) \]

\[T_1'(q) \]

\[\delta(y) T_1^+ T_1' \]

\[q \rightleftharpoons e \]

Minimal model gives

\[\tau_p \approx 10^{-34} \text{ yr} \] for \(l^+ \pi^0, l^+ K^0, \Sigma^+ \pi^0, \Sigma^+ \)

\[e \text{ or } \mu \]
$\textbf{Susy} : M_{\text{mess}} > M_c$

Various possibilities for T_2, F_1, F_2

$U(3)_T \times U(3)_F \xrightarrow{\text{matter}} \xrightarrow{\text{location}} \ldots$

Expect:

- Non-universal squark/slepton masses
- FCNC from superpartner exchange
Ex: SUSY breaking B.C.

\[\text{"SU(2)_R twist"} \]

\[
\begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix} \quad \text{on} \quad \begin{pmatrix} \frac{1}{2} \\ A \end{pmatrix}
\]

\[\alpha \sim 10^{-13}! \]

DYNAMICS OF F

COMPONENT OF RADION

Martí Pomarol 2/1/01 06

SOFT OPS. AT \(M_c \)

All bulk superpartners:\n\[\tilde{m} = \frac{\alpha}{R} \]

All boundary superpartners:\n\[0 \]

Trilinear A parameters:\n\[1, 2, 3 \]

(Counts \# scalars in bulk)
CONSEQUENCES

Unique matter locations:

Param.

\[\tilde{m}, \mu, B \quad \xrightarrow{\text{ENSB}} \quad \tilde{m}, \tan \beta \]

Superpartner spectrum
Predictions For

Probe matter location:

<table>
<thead>
<tr>
<th>(\tan \beta)</th>
<th>(\bar{g})</th>
<th>(\bar{g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>699</td>
<td>911</td>
</tr>
<tr>
<td>10</td>
<td>251</td>
<td>334</td>
</tr>
<tr>
<td>5</td>
<td>427</td>
<td>531</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>175</td>
</tr>
<tr>
<td>5</td>
<td>251</td>
<td>334</td>
</tr>
<tr>
<td>10</td>
<td>417</td>
<td>518</td>
</tr>
<tr>
<td>5</td>
<td>422</td>
<td>528</td>
</tr>
<tr>
<td>10</td>
<td>701</td>
<td>915</td>
</tr>
<tr>
<td>(A)</td>
<td>675</td>
<td>880</td>
</tr>
<tr>
<td>(H^0)</td>
<td>602</td>
<td>780</td>
</tr>
<tr>
<td>(H^\pm)</td>
<td>209</td>
<td>277</td>
</tr>
<tr>
<td>(H^\pm)</td>
<td>317</td>
<td>422</td>
</tr>
<tr>
<td>(\alpha_s(M_Z)) { \pm 0.003 }</td>
<td>118</td>
<td>128</td>
</tr>
<tr>
<td>(m_0(M_Z)) { \pm 0.10 }</td>
<td>552</td>
<td>690</td>
</tr>
<tr>
<td>(m_0(M_Z)) { \pm 0.10 }</td>
<td>555</td>
<td>690</td>
</tr>
<tr>
<td>(m_0(M_Z)) { \pm 0.10 }</td>
<td>558</td>
<td>695</td>
</tr>
<tr>
<td>(Br(\mu \rightarrow e\gamma))</td>
<td>(6 \times 10^{-12})</td>
<td>(8 \times 10^{-12})</td>
</tr>
<tr>
<td>(Br(\mu \rightarrow 3\nu))</td>
<td>(4 \times 10^{-14})</td>
<td>(5 \times 10^{-14})</td>
</tr>
<tr>
<td>(Cr(\mu \rightarrow e;^{48}Ti))</td>
<td>(4 \times 10^{-14})</td>
<td>(5 \times 10^{-14})</td>
</tr>
<tr>
<td>(Br(\tau \rightarrow \mu\gamma))</td>
<td>(1 \times 10^{-8})</td>
<td>(1 \times 10^{-8})</td>
</tr>
</tbody>
</table>

Includes SUSY threshold corrections
Complete success for moderate $\tan \beta$.

$\frac{-28g^2 + 7y_t^2}{80\pi^2} \ln \frac{M_S}{M_c}$
LEPTON FLAVOR VIOLATION

$m^2_E = 0$, $m^2_\alpha = \begin{pmatrix} m^2_1 & m^2_2 \\ m^2_2 & m^2_3 \end{pmatrix}$, $A_E = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$

$U(3)_L \xrightarrow{\text{lepton location}} U(2)_L$

$O(1)$ tree-level effect

Much larger than $O\left(\frac{y_E^2}{16\pi^2}\right)$

4D SUSY GUT effect

Hall, Kostelecky, Roby (81)

Barbieri, Hall (94)
$\mu \rightarrow e$ example

$\frac{m_\mu \tan \beta}{W_{ee}} W_{\mu\mu}^*$

$\mu^L \rightarrow \tilde{b} \rightarrow \tilde{\tau} \rightarrow e_R$

1.2×10^{-11}

10^{-14}

4.3×10^{-12}

10^{-16}

1.1×10^{-6}

10^{-7}

$\text{PSI} \rightarrow$

$\text{MECO} \rightarrow$

β from factories

$\text{VERY POWERFUL PROBE}$

$\text{Br}(\mu \rightarrow e\gamma) \approx 3 \times 10^{-11} \left(\frac{200 \text{ GeV}}{m} \right)^4 \left(\frac{|W_{ee}|}{0.04} \right)^2 \left(\frac{|W_{\mu\mu}|}{0.01} \right)^2 \left(\frac{\tan \beta}{5.0} \right)^2$

$\text{Br}(\mu \rightarrow 3e) \approx 2 \times 10^{-13} \left(\frac{200 \text{ GeV}}{m} \right)^4 \left(\frac{|W_{ee}|}{0.04} \right)^2 \left(\frac{|W_{\mu\mu}|}{0.01} \right)^2 \left(\frac{\tan \beta}{5.0} \right)^2$

$\text{Cr}(\mu \rightarrow e_1^{48} Ti) \approx 5 \times 10^{-8} \left(\frac{200 \text{ GeV}}{m} \right)^4 \left(\frac{|W_{ee}|}{0.04} \right)^2 \left(\frac{|W_{\mu\mu}|}{1.0} \right)^2 \left(\frac{\tan \beta}{5.0} \right)^2$
Conclusions

- Alternative physics for unification at 10^{16} GeV

- Solves dichotomy of 4D susy GUTs
 - $d=5$ p decay: $u(1)_R$
 - $q-l$ mass rel. only for heavy g
 - $h_2 - H_3$ splitting
\[\alpha_5(M_Z) = 0.118 \pm 0.003 \]

\[m_b(M_Z) = 3.3 - 0.02(b_m - 10) \text{ GeV} \quad 3.0 \pm 0.2 \]

- Some of flavor from \[\frac{M_3}{M_4} \approx 10^2 \]
- \(d = 6 \) p decay \[p \rightarrow \ell^+ \pi^0, \ldots \]

* Predictive superpartner spectrum \(\Rightarrow \) large \(M_3 \)

* \(\mu \rightarrow e \) transitions