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Abstract

We review ideas for explaining the pattern of fermion masses and mixing angles
based on a spontaneously broken family symmetry.

1 The form of the quark mass matrices.

The fundamental parameters of the Standard Model or its supersymmetric extension that
are responsible for fermion masses and mixings are the Yukawa couplings or,equivalently,
the fermion mass matrix. Unfortunately we do not have sufficient experimental informa-
tion to construct the full mass matrices because we only measure the mass eigenvalues
and the CKM matrix. The latter is the combination V u†V d of the unitary matrices which
express the left-handed current quark eigenstates in terms of the mass eigenstates. We
do not know V u or V dseparately and we have no information about the right-handed
matrices needed to diagonalise the mass matrix. As a result our knowledge of the full
mass matrices is limited. A fit to all the data, including the new data coming from the
b−factories, assuming that small CKM mixing angles implies small mixing angles in both
the up and the down mass matrices, gives [1]

Mu

mt
=


 0 b′ε3 c′ε3

? ε2 a′ε2

? ? 1


 (1)

and

Md

mb
=


 ≤ ε4 bε̄3 cε̄3

? ε̄2 aε̄2

? ? 1


 (2)

The parameters below the diagonal are only weakly constrained because, as discussed
above, measurement of the quark masses and the CKM matrix does not provide enough
information to determine the full quark mass matrices. The parameters of the up quark
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mass matrix are given by ε = 0.05, b′ � 1 while a′ and c′ are very weakly constrained.
The parameters of the down quark mass matrix are much better determined with

ε̄ = 0.15± 0.01 |b| = 1.5± 0.1 a = 1.31± 0.14 (3)

|c| = 0.4± 0.05 ψ = −240 ± 30 or (4)

|c| = 0.9± 0.05 ψ = 600 ± 50 (5)

where c = |c| eiψ. The (2, 2) matrix element is mainly determined by ms, while the (1, 2)
and (1, 3) matrix elements are mainly determined by Vus and Vub respectively. The fact
that the (2, 2) and (2, 3) matrix elements are very similar in magnitude is required by the
smallness of Vcb. Finally the bound on (1, 1) element comes from md. The recent data now
requires that the (1, 2) and (1, 3) are also quite similar 1.

The uncertainty in the matrix elements below the diagonal gives rise to a wide variety
of models capable of explaining the fermion masses [2]. One particularly popular choice
is to make them large giving rise to large right handed down quark mixing angles. The
gauge group SU(5) relates these angles to the mixing of the left-handed neutrinos, offering
the possibility of explaining the large angles needed for neutrino oscillation in a manner
consistent with the structure of the quark mass matrices. Clearly it is of interest to try
to determine the elements below the diagonal in order to test these ideas.

In the context of supersymmetry, these elements also determine the coupling of the
squarks and large elements will give rise to large flavour changing effects via virtual
squark exchange. In the case of supersymmetry breaking driven by supergravity these
effect can be large. In particular, for the case that fermion mass structure is due to a
family symmetry spontaneously broken by the vacuum expectation value of a familon field
one can place strong bounds on the down quark mass matrix below the diagonal. The
reason is that the familon necessarily acquires an F − term proportional to the gravitino
mass and this in turn generates soft trilinear couplings which are not diagonalised with
the fermion mass matrix. The resulting mass matrix has the form [3]

Md

mb

=




≤ ε4 bε̄3 cε̄3

≤ ε̄3 ε̄2 aε̄2

≤ ε̄2 ≤ ε̄2 1




where the bound on the (2, 1) element comes from md and also from the bounds on
∆S �= 0, ∆Q = 0 processes. The bound on the (3, 1) element comes from the bounds on
∆S �= 0, ∆Q = 0 processes while the bound on the (3, 2) element comes from the bound
on the electric dipole moments. Clearly these bounds do not allow large right-handed
mixing and point rather at a near symmetric form for the mass matrix2.

What other evidence is there for a symmetric form for the mass matrices? Perhaps
the most convincing is the success of the Gatto, Sartori, Tonin (GST) relation [4] which
predicts the Cabibbo angle (the (1, 2) mixing) in terms of quark masses

sin θc =

√
md

ms

− eiδ
√
mu

mc

(6)

1If one allows for an asymmetric form of the quark mass matrices with large entries below the diagonal
it is still possible to have a (1, 3) zero [1].

2One should note that the bounds do not apply in gauge mediated schemes of supersymmetry breaking
where the gravitino mass is significantly reduced.
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where δ is the CP violating phase of the Standard model. This predicts a value 0.218±
0.005 to be compared to the experimental value 0.220± 0.003. This relation follows if the
(1, 1) element is too small to affect the quark masses in leading order (a “texture zero”)
and the (1, 2) block is symmetric :

Md

mb
=


 ≤ ε5 bε̄3 cε̄3

bε̄3 ε̄2 aε̄2

≤ ε̄2 ≤ ε̄2 1


 . (7)

We have few enough clues as to the physics beyond the Standard model that I am loath
to treat the success of this relation as an accident and prefer to require that a theory
of fermion masses should reproduce it. In parenthesis I note that models based on a
spontaneously broken family symmetry require familons with both signs of family charge
to achieve this relation. The popular class of models [2] based on charges of a single sign
to give holomorphic zeros replace the equality of eq.(6) by an order of magnitude equality.

Of course we would like to describe charged lepton masses too. Surprisingly a very
similar form describes the lepton mass eigenvalues very accurately :

M l

mτ
=


 ≤ ε5 bε̄3 ?ε̄3

bε̄3 3ε̄2 ?ε̄2

?ε̄2 ?ε̄2 1


 (8)

In this the equality of the expansion parameter and the coefficients in the (1, 1), (1, 2) and
(2, 1) elements give the relations mb/mτ (MX) = 1/3, Det(M l) = Det(Md)|MX

which are
in excellent agreement with experiment after including radiative corrections in running
from a high (unification) scale to the low energy quark mass scale. This strongly suggests
an underlying quark-lepton unification. Of course experiment tell us one does not have
exact equality between down quark and lepton masses and to allow for this in eq.(8)
the (2, 2) element has been chosen be 3 time larger than the equivalent entry in the
down quark sector. Such a factor readily arises as a Clebsch–Gordon coefficient in a
Grand Unified theory [5]. With it one has the phenomenologically successful relations
ms/mµ(MX) = 1/3, md/me(MX) = 3.

2 Symmetries and Textures

How can one obtain mass matrices of the form discussed here? In my opinion the hi-
erarchical structure for the fermion mass matrices strongly suggests it originates from a
spontaneously broken family symmetry. In this approach, when the family symmetry is
exact, only the third generation will be massive corresponding to only the (3,3) entry of
the mass matrix being non-zero. When the symmetry is spontaneously broken, the zero
elements are filled in at a level determined by the symmetry. Suppose a field θ which
transforms non-trivially under the family symmetry acquires a vacuum expectation value,
thus spontaneously breaking the family symmetry. The zero elements in the mass matrix
will now become non-zero at some order in < θ > . If only the (2, 3) and (3, 2) elements
are allowed by the symmetry at order θ/M, where M is a mass scale to be determined,
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then a second fermion mass will be generated at O((θ/M)2). In this way one may build
up an hierarchy of masses.

M ∼

 0 0 0

0 0 0
0 0 1


→


 0 0 0

0 0 < θ > /M
0 < θ > /M 1


 (9)

2.1 Symmetry breaking in the mass matrix

An important question is how do these elements at O(θ/M) arise? A wide variety of
models have been constructed in which the mechanism for communicating the breaking
to the mass matrix, and generating the hierarchy takes on different forms. It can be due
to a heavy messenger sector, to radiative corrections or even to propagation in additional
space dimensions [2]. Here I will just discuss the first case in which symmetry breaking
is communicated via an extension of the “see-saw” mechanism mixing light to heavy
“messenger” states - in this context it is known as the Froggatt–Nielsen mechanism [6].
To illustrate the mechanism, suppose there is a vector-like pair of quark messenger states
X and X with mass M and carrying the same Standard Model quantum numbers as the
cR quark, but transforming differently under the family symmetry, so that the Yukawa
coupling hcLXH is allowed. Here H is the Standard Model Higgs responsible for giving
up quarks a mass. When H acquires a vacuum expectation value (vev), there will be
mixing between cL and X. If in addition there is a gauge singlet field θ transforming
non-trivially under the family symmetry so that the coupling h′XcRθ is allowed, then the
mixing with heavy states will generate the mass matrix.

(
cL X

)( 0 h < H >
h′ < θ > M

)(
cR
X

)

Diagonalising this gives a see-saw mass formula

mc � hh′ < H >< θ >
M

(10)

This mass arises through mixing of the light with heavy quarks.
A similar mechanism can generate the mass through mixing of the light Higgs with

heavy Higgs states. Suppose HX , HX are Higgs doublets with mass M. If HX has family
quantum numbers allowing the coupling HHXθ, there will be mixing between H and HX .
If the family symmetry also allows the coupling cLcRHX , the light-heavy Higgs mixing
induces a mass for the charm quark of the form given in eq.(10).

3 Identification of the Family symmetry

The nature of the spontaneously broken family symmetry is hard to identify because
the available data on quark masses and mixings is insufficient uniquely to pin it down.
The kinetic terms and gauge interactions of the Standard Model has a very large family
symmetry group, namely U(3)5, where the U(3) factors act on the left- and right- handed
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multiplets of quarks and leptons respectively. The group is extended to U(3)6 if three
right-handed neutrinos are added. Any family group should be contained in U(3)6 but
this leaves very many possibilities. In what follows I shall illustrate the possibilities by
discussing two characteristic possibilities. In the first I consider the simplest case of an
Abelian family symmetry. Such symmetries abound in compactified string theories so
are quite natural extensions of the Standard Model. The second is a non-Abelian family
symmetry, a subgroup of the U(3)6.

3.1 An Abelian family symmetry for quark masses

How difficult is it to find a family symmetry capable of generating an acceptable fermion
mass matrix? The surprising answer is “Not at all difficult” as I will illustrate by a very
simple example utilising an Abelian family symmetry group [7]. We assign the same family
charges (−3, 2, 1) to (dL, sL, bL) and to (dcL, s

c
L, b

c
L). This guarantees the symmetric form of

the mass matrices. We assume the symmetry is spontaneous via Standard Model singlet
fields, θ, θ̄, with U(1) charges -1, +1 respectively, which acquire vacuum expectation
values (vevs), < θ >=< θ̄ >, along a “D-flat” direction The resultant form of the down
quark mass matrix is

Md

mb

=



ε8 ε̄3 ε̄4

ε̄3 ε̄2 ε̄
ε̄4 ε̄ 1




where ε = (< θ > /M). This form is in good agreement with eq.(7) apart from the fact
that the (2, 3) element is of O(ε) rather than the O(ε2) required by the value of Vcb. To
correct this requires a choice of the coefficients which are not determined by the Abelian
symmetry. For example good agreement is obtained if the (2, 3) and (3, 2) elements are
1/2 while the other elements are near unity. Note that the texture zero in the (1, 1)
element is required by the Abelian symmetry and the magnitude predicted for the (1, 3)
element is in good agreement with the recent measurements requiring a non-zero entry
for a symmetric mass matrix. Since the up quarks have the same family charge as the
down quarks, their mass matrix has a similar form to that of the down quarks. If SU(2)R
is also an exact symmetry of the theory even the expansion parameters and operator
coefficients are equal and the mass matrices are identical. This is clearly not acceptable
and, if there is an underlying SU(2)R symmetry, it must be spontaneously broken so that
the equality of the mass matrices will be lost through soft symmetry breaking terms.
These enter through the expansion parameter ε which is determined by θ/M where θ
is the field spontaneously breaking the symmetry and M is the messenger mass of the
state responsible for communicating the symmetry breaking and generating the higher
dimension operators. Due to SU(2)R breaking the messenger mass may be different for
the up and down quark sectors and hence the expansion parameters may differ. It is also
possible that the family symmetry breaking field, θ, is not a singlet under SU(2)R and its
vev breaks SU(2)R, again leading to a different expansion parameter for the up and the
down sectors and giving a form in agreement with eq.(1). A similar form applies to the
charged leptons with the same expansion parameter as for the down quarks and one can
readily obtain a form in agreement with eq.(8).
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3.2 Non-Abelian family symmetry

While a very simple Abelian symmetry provides a remarkable consistent description of
fermion masses it does fall short of a complete theory, mainly because the relative coeffi-
cients of the various matrix elements are not determined. To do this requires a non-Abelian
family symmetry. As discussed above any family group should be contained in U(3)6 but
this leaves very many possibilities for non-Abelian family symmetries. If there is a GUT
symmetry the possible family group will be smaller; for example if the GUT is SO(10)
the maximal group is U(3).

There is a strong motivation for a non-Abelian family symmetry in supersymmetric
theories [8] because it can explain why the squarks and sleptons are nearly degenerate
as is required to suppress flavour changing neutral currents. For the case of a SU(3)
family symmetry commuting with SO(10) the 16 dimensional representation of SO(10)
transforms as a triplet under SU(3) giving the three generations of quarks and leptons.
As a result, after SO(10) breaking but while the family symmetry is unbroken, the soft
squark masses are degenerate as are the soft sleptons. The degeneracy is lifted once the
family symmetry is broken, but this breaking is through higher dimension operators and
may be small. The structure of fermion masses is particularly sensitive to this breaking,
as they vanish in the symmetry limit. It is through the vacuum structure that the fermion
hierarchy is established. Here I discuss a specific model which illustrates the interesting
phenomenological possibilities in such a scheme [9, 10].

3.2.1 Vacuum alignment

The family group has a breaking pattern given by

V1 V2

SU(3) −→ SU(2) −→ Nothing
< θ1 > < θ2 >

where θ1 and θ2 are scalar fields transforming as 3 under the family symmetry. Vacuum
expectation values (vevs) for θ1 and θ2 may be readily driven by negative soft masses
squared or by other terms in the potential3. Clearly one may always perform an SU(3)
rotation so that

< θT1 >= V1

(
0 0 1

)
At the second stage of breaking one may always use the residual SU(2) symmetry to
rotate the vev of the second field to have the form

< θT2 >= V2

(
0 cosϕ sinϕ

)

It turns out [9] that it is straightforward to align the breaking such that ϕ = 450. As we
shall see this has the effect of making the (1, 2) and (1, 3) and the (2, 2) and (2, 3) mass
matrix elements equal respectively in leading order explaining the structure of eq.(7). It
also can lead quite naturally to large neutrino mixing angles.

3I assume that the vevs develop along D-flat directions < θi >=< θ
i
>.
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In leading order, with an additional Abelian family symmetry restricting the allowed
terms, the superpotential has the form

W1 = Qiθ
i
1d
c
iθ
i
1

H1

M2
1

+Qiθ
i
2d
c
iθ
i
2

H1

M2
1

The resulting mass matrix has the form

Md =


 0 0 0

0 ε2 ε2

0 ε2 1 + ε2


 V 2

1

M2
1

< H1 >, ε2 =
V 2

2

V 2
1

where I have taken cosϕ ≈ sinφ. Similarly one obtains the same form for the up quark

mass matrix but with expansion parameter ε2 =
V 3
2

V 2
1 M2

where one must allow for a different

messenger mass M2 in the up quark sector. Finally the remaining elements of the mass
matrix are generated by the next terms of higher order allowed in the superpotential4

W2 = (εijkQiθ1jθ2k d
c
iθ
i
2 +Qiθ

i
2 ε

i′j′k′dci′θ1j′θ2k′)
S

M1

H1

M3
1

where θ1,2 are family triplet chiral superfields whose scalar components are aligned with
those of θ1,2 fields to maintain D − flatness. Including these terms gives

Md =


 0 ε2α −ε2α
ε2α ε2 ε2

−ε2α ε2 1 + ε2


 V 2

1

M2
1

< H1 >

This illustrates the main structure one can obtain from a non-Abelian symmetry.

4 Non-Abelian symmetry and neutrino mixing

One may readily extend the non Abelian symmetry to obtain a description of lepton
masses and mixing. Because the expansion parameter ε is not very small, one must
include higher dimension operators before attempting a detailed comparison with data.
Including these effects one obtains a mass matrix of the form [10]

M/M3,3 =




ε8 ε3(z + (x+ y)ε) ε3(z + (x− y)ε)
−ε3(z + (x+ y)ε) ε2(aw + uε) ε2(aw − uε)
−ε3(z + (x− y)ε) ε2(aw − uε) 1


 (11)

Here z, w and u are real coefficients and x and y complex coefficients of order 1. Given
that the symmetry properties of the up and the down quarks , the charged leptons and
the neutrinos are the same the form of the mass matrices will also be the same. For the

4It is necessary to forbid the lower dimension terms εijkQiθ1,2 j dc
k

H1
M1

and this requires at least
an additional discrete ZN symmetry under which only the θ, θ fields transform. If θ1,2 transforms
nontrivially while θ1θ2 θ2 is invariant the unwanted term is not present. One may readily check that all
other unwanted terms can similarly be eliminated.
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case of the down quarks and leptons the expansion parameter is ε = ε̄ and for neutrinos
and up quarks ε = ε and the higher order terms are necessary to fit the data for Md of
eq(2). The coefficients w, u, z, x, y of O(1) are not determined by the symmetry alone
but can be determined by a fit to the down quark mass matrix. The factor a is the result
of the Clebsch–Gordon factor of an underlying GUT. A simple example explaining the
origin of this factor is provided in the context of an SO(10) theory. Suppose there is
a field Σ transforming as a 45 responsible for SO(10) breaking and communicating this
breaking to the mass matrix through its coupling to quarks and leptons. Writing the
vacuum expectation value

< Σ >= B − L+ κTR,3, (12)

the contribution of these graphs to the down quarks and leptons is respectively (1/3−κ/2)
and (−1−κ/2) when coupling to the right-handed states and 1/3 and -1 when coupling to
the left-handed states. We consider the case that the first class has the lighter messengers
and dominates. For κ = 0 we obtain the form of eq(8). However for case κ = 2 the
contribution to the leptons +3 times that of the quarks (al = 3) so we obtain eq(8) with
+3 rather than −3. Since the lepton mass eigenvalues are insensitive to this sign we obtain
identical masses for either form. However there is a significant difference in the coupling
to neutrinos, the κ = 0 case giving aν = −3 while κ = 0 gives aν = 0.

5 Neutrino masses.

5.1 Dirac mass

Since the family symmetry properties of the neutrinos are the same as those of the quarks
and charged leptons, the neutrino Dirac mass matrix between the doublet neutrinos and
the singlet (right-handed) neutrinos is also given by eq.(11) with ε = ε and a = aν . Here
the expansion parameter is the same as that for up quarks since the neutrino and up
quark have the same SU(2)R charges and get their mass from the same Higgs doublet.

5.2 Majorana mass

Of course it is necessary to determine the Majorana mass matrix before one can determine
the effective neutrino mass matrix via the see-saw formula. Although the family symmetry
properties of the right-handed neutrinos are related to those of the charged leptons it is not
possible to use this information unambiguously to determine the structure of the Majorana
mass matrix. In particular it may not have the same form as is found for the Dirac matrix.
The reason is twofold. Firstly the Majorana masses are generated via a new ∆L = 2
lepton number violating Higgs sector and it is necessary to specify the family symmetry
representation content of this sector before the Majorana mass structure is fixed. Secondly
the Majorana mass matrix involves the coupling of identical fermions and so antisymmetric
terms allowed in the Dirac mass matrix will not arise in the Majorana matrix. Despite
this, we can make some general statements about the structure. In particular we expect
an hierarchical structure for the Majorana mass matrix because the underlying family
symmetry (SU(3)), is the same as applies to the Dirac matrix which leads to a structure
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ordered by the expansion parameter εM = < Φ > /M ′. If a single ∆L = 2 (effective)
symmetry breaking field, Φ, dominates there will no possibility of degeneracy between
matrix elements. Moreover, for a large part of the parameter space, the form of the mass
matrix is in practice determined. In the limit that εM << ε (which is the case if the
messenger sector in the Φ sector is heavier than in the electroweak breaking sector) the
mixing in the neutrino sector is dominated by the mixing coming from the Dirac mass. The
most probable situation is that the vev of the ∆L = 2 Higgs responsible for the dominant
Majorana mass comes from a single field carrying definite family symmetry charge, which
generates a mass matrix in which all three eigenvalues are unequal. The matrix can be
diagonalised by small rotations of O(εM) giving Mν

Majorana = Diagonal[m1m2, m3]. It is
important to note that this mass eigenstate basis is likely to be very close to that used for
the Dirac matrix, eq.(11), the mass eigenstates will be the family symmetry eigenstates
up to corrections of O(εM).

6 The light neutrino mass matrix

We are now able to determine the masses and mixing angles of the light neutrinos using eq
(11) in the see-saw equation Meff = Mν

Dirac.M
−1
Majorana.M

ν
Dirac. The effective Lagrangian

associated with the see-saw mass is of the form

L ∼= ε6

m1
(z(νµ + ντ ))

2H2
2 +

ε4

m2
(aνw(νµ + ντ ) + ε(u(νµ − ντ ) + zνe))2H2

2

+
1

m3
(ντ + a

′
ννν + εc

′
ννe)

2H2
2 . (13)

The condition that the right handed neutrinos of mass m1 and m2 respectively domi-
nate the see-saw contribution to the heaviest and next heaviest light neutrino eigenstates
masses is ε6

m1
> O( ε

6

M2
). In this case, diagonalising eq.(13) one finds the masses of neutrino

mass eigen states are given approximately by

Ma =
ε6

m1
2z2v2 (14)

Mb =
ε6

m2
(2u2 + z2)v2 (15)

Mc <
1

m3
v2 (16)

and the states have composition

νa ∝ z(νµ + ντ ) + yε
′(νµ − ντ )

νb ∝ zνe + r(νµ − ντ − yε′(νµ + ντ )/z)
where

r =
√
2(u− aνwy/z) = O(1)

¿From this one sees that the heaviest state is maximally mixed while the next state
has near maximal mixing in agreement with the atmospheric and neutrino oscillation
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measurements. For the case κ = 0 the masses are consistent only with the LOW solar
solution but for κ = 2 the LMA is also allowed [10]. Thus, due to the see-saw mechanism,
the large mixing angles readily emerge from an underlying form close to that of the quarks.

7 Summary

The new data for both the quark and lepton sectors is testing our ideas for the origin of
the fermion masses and mixings and raises interesting questions :

• Is there a family symmetry generating the hierarchy? Both Abelian and non Abelian
symmetries look promising.

• Is there a connection between quarks and leptons? The relations following from
SU(5) or SO(10) (or strings) seem capable of giving quantitatively acceptable rela-
tions between masses and mixing angles in the quark and lepton sectors. Somewhat
surprisingly the see-saw mechanism allows quark and lepton Dirac masses to have
a similar form supporting the idea of an underlying family symmetry.

• Are there significant flavour changing and CP violating processes coming, in a su-
persymmetric theory, from the Yukawa sector responsible for fermion masses? Es-
timates suggest these effects should be very close to current bounds.

The answers to these questions will lead us a long way towards understanding the
origin of mass.

We acknowledge support from the RTN European project HPRN-CT-2000-0148.
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