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In this talk we discuss some recent developments that make it possible to com-
pute exact, instanton corrected couplings for a large class of N = 1 supersymmetric
four-dimensional string compactifications. In particular the non-perturbative super-
potential W (φ) can be determined in these theories and the longstanding issue of
supersymmetry breaking and vacuum selection can be studied explicitly. The relevant
four-dimensional string backgrounds are so-called open-closed type II strings compact-
ifications on Calabi–Yau manifolds X with certain background fluxes and background
branes. Specifically the branes wrap non-trivial cycles in X and simultaneously fill
space-time. The intention of this note is to give an overview over the setup, ideas and
results for the interested non-expert, while we refer to the references at the end for
further details.

The four-dimensional string effective low energy action is an N = 1 supergravity
theory coupled to Yang-Mills and matter described by chiral superfields φ. The stan-
dard supergravity action is determined by two functions. The first is a real function
G(φ, φ̄) of the chiral superfields

G(φ, φ̄) = K(φ, φ̄) + ln(W (φ)) + ln(W̄ (φ̄)). (1)

Here K is the Kähler potential determining the kinetic terms by gij̄ = ∂i∂j̄K, where
we use subscripts for derivatives with respect to the chiral superfields, e.g. ∂i = ∂/∂φi.
Moreover, the holomorphic function W (φ) is the N = 1 superpotential.

There is another holomorphic function f(φ) that determines the kinetic terms of
the Yang-Mills fields1, contained in the F-term

LY M =
1
4

∫
d2θ f(φ) trW 2

α, (2)

where Wα is the chiral spinor superfield with the gaugino as the lowest component.
More precisely, the “functions” G and f represent sections of two bundles over the

N = 1 parameter space M defined as the space of vev’s for the chiral superfields φ. We
will loosely refer to this space as the N = 1 moduli space although the superpotential
W (φ) will, in general, fix some of the vev’s of the “moduli” φ. However, in the type II

1 For simplicity we discuss the case of a single simple group.
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backgrounds considered below, the superpotential is often entirely of a non-perturbative
origin, and thus (at least a subset of) the scalar field vev’s will be indeed moduli of the
perturbative theory.

In the following we will sketch how the holomorphic data W (φ) and f(φ) can
be computed exactly for these type II backgrounds from the underlying 2d theory on
the string world-sheet. This result includes an in general infinite series of instanton
corrections. The relevant instanton corrections are described by non-perturbative con-
figurations in the 2d world-sheet theory, the so-called world-sheet instantons. These
are extended Euclidean string world-sheets that wrap 2-cycles C of volume V in the
compactification manifold X .

Importantly, the world-sheet instanton corrections to the effective action describe
often the effect of genuine space-time instantons in the four-dimensional theory. The
reason is the familiar fact that the space-time coupling constants of the type II fields
from the Ramond-Ramond (RR) sector are determined by the geometric moduli of
the compactification manifold, and not by the dilaton (which governs the string loop
expansion). In the simplest case of a class of string theory embeddings of a standard
Yang-Mills gauge group in the RR sector, the four-dimensional gauge coupling g is
given by

g−2 = V ol(C̃), (3)

where C̃ is a fixed holomorphic 2-cycle in the compactification manifold X . A world-
sheet instanton that wraps C̃ once, comes with a weight factor exp(−V ol(C̃)). By
eq.(3), this coincides with the weight factor e−1/g2

of a space-time instanton in the
gauge theory.

In a concrete setup it is usually possible to understand the connection between
world-sheet and space-time physics in detail. In fact many of the exact superpotentials,
derived from world-sheet instantons as discussed below, have a space-time interpreta-
tion in terms of gaugino condensation in an asymptotically free Yang-Mills factor. As
will be further discussed below, these non-perturbative superpotentials for the Yang-
Mills theory coupled to gravity break supersymmetry dynamically, in accordance with
previous discussions of supersymmetry breaking by gaugino condensation [28].

The methods described in the following thus lead to phenomenologically inter-
esting, four-dimensional N = 1 string compactifications with non-perturbative super-
symmetry breaking, which is exactly computable from the fundamental string theory.
Moreover, the string effective theory is not just a generic N = 1 supergravity; instead
it has miraculous additional features inherited from the underlying string theory. It
should be mentioned that, at the same time, the open-closed type II backgrounds com-
prise a rather large class of four-dimensional string theories which can accommodate the
degrees of freedom of the standard model (as usual, the tricky part is rather to obtain
just the standard model plus gravity, with the couplings to additional sectors sup-
pressed at low energy and consistent with experiments). Thus these open-closed type
II strings combine specific predictions, interesting physics and computability, proper-
ties that render them to a very promising candidate for a systematic, top-bottom string
phenomenology.

Let us start by describing in more detail what is meant by an open-closed type
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II compactification. As is well-known, the bosonic degrees of freedom of the type
II string in ten dimensions include, apart from the metric gµν , the NS B-field Bµν

and the dilaton ϕ, a set of gauge potentials Ap+1
µ1...µp+1

from the RR sector. Here the
superscript p+1 denotes the degree of the form Ap+1, taking even or odd values in the
two versions of the type II string called IIA and IIB, respectively. The sources for the
RR gauge potentials are the D-branes which couple, amongst others, via the minimal
world-volume coupling

cp+1

∫
WV

Ap+1,

where cp+1 are some dimensionful constants. In addition there are 5-branes in the NS
sector of the type II strings that represent sources for the dual of the NS 2-form B.

To obtain a four-dimensional string vacuum, one may compactify the type II string
on a six-dimensional manifold X . If X is a Calabi–Yau manifold, then the resulting
theory has N = 2 supersymmetry in four dimensions. There are two closely related
modifications of this compactification that break supersymmetry in a way that may be
described by an effective N = 1 supergravity theory with non-trivial superpotential.
The first is a modification of the closed string sector, by adding background fluxes of
the field strengths F p+2 of the gauge fields on non-trivial cycles in X . The second is the
addition of branes that wrap non-trivial cycles in X and simultaneously fill space-time.
In particular the presence of background D-branes adds an open string sector, hence
the nomenclature open-closed type II strings.

As is apparent from the above, the open-closed type II background will be coarsely
specified by a set of flux and brane numbers associated with the non-trivial homology
cycles in X . Restricting to the RR sector, these are the integers

Nk =
1
2π

∫
C

(p+2)
k

F p+2, Mk = # of branes on C
(p+1)
k . (4)

Here k is some label for the basis of homology cycles in H∗(X). Similarly, adding NS
fluxes and branes would be described by another set of integers. In the following we
restrict to RR fluxes and D-branes for simplicity.

Note that the RR fluxes and branes are defined on cycles of different dimensions
in X . E.g. in the type IIA string, where p is even, the flux numbers Nk are assigned
to elements of the even-dimensional homology Heven(X) = H0 ⊕H2 ⊕H4 ⊕H6. The
brane numbers Mk are assigned to the odd-dimensional homology, which is in fact
only non-trivial in dimension three for a Calabi–Yau 3-fold. Therefore they describe
D6-branes wrapped on 3-cycles in X . In the type IIB string, where p is odd, the roles
of the even and odd dimensional cycles for fluxes and branes are exchanged.

Thus an open-closed string compactification with RR backgrounds is coarsely spec-
ified by the data

(X ;Nk,Mk)

defining the Calabi–Yau manifold as well as the flux and brane numbers2. More specif-
ically the open-closed type II background (X ;Nk,Mk) depend also on several continu-
ous parameters representing vev’s of chiral superfields φ in the four-dimensional theory.

2 In general, the background fluxes and branes will lead to a back-reaction of the type II
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They specify the shape of the geometry of X and in addition the brane configurations
within it. We are interested in the φ dependence of the effective supergravity theory
for a given type II background (X ;Nk,Mk).

There is an important peculiarity of the scalar field sector of these open-closed
type II backgrounds that will be crucial to the following. Essentially the moduli fields
split into two sets of complex structure type and Kähler type, respectively. These two
sets are largely decoupled from each other in the effective theory3: One set determines
the holomorphic F-terms, while the other set enters only the D-terms. In general there
is also a weak dependence of the F–terms on the second set of moduli; this dependence
is however of a universal type and can be recovered from relatively simple arguments.

With a restriction on the internal dimension of the brane, discussed momentarily,
all of the moduli fields have an simple interpretation in terms of the type II brane
geometry. In particular the above split into two sectors is rather simple: the first
set, denoted by zA in the following, measures the volumes of minimal 3-manifolds
within X and is of a complex structure type. That is, the volume form is given by
the holomorphic (3, 0) form Ω on X . The second set, denoted by tA in the following,
measures the volumes of holomorphic 2-manifolds within X , with the volume form
given by the Kähler form J .

Moreover each type of moduli gets contributions from the closed and the open
string sector. Moduli in the closed string sector measure the volume of cycles Γ without
boundaries in X and describe the geometry of X . Moduli in the open string sector
measure the volumes of submanifolds Γ̂ with boundaries ∂Γ̂ lying on the D-brane.
Deforming the D-brane wrapping within X changes the volume of the submanifold Γ̂
and it is in this way that the four-dimensional scalar fields parametrize the geometry
of the brane.

Let us illustrate this with an example of a type IIA string configuration, where the
closed string fluxes take non-trivial values on even-dimensional cycles and in addition
there can be a D6-brane wrapped on a 3-cycle L in X . The holomorphic superpotential
W (tA) for this type IIA background depends only on the Kähler type of moduli. They
are defined by the volumes of 2-manifolds ΓA ⊂ X as

closed string: Im ta =
∫
Γa

J a = 1, ..., h2(X) (Kähler structure of X)
open string: Im tβ =

∫
Γ̂β

J β = 1, ..., h1(L) (“position” of D6 brane on L ⊂ X)

Here Γa is a basis for the 2-cycle homology H2(X) and moreover Γ̂ is a basis of 2-
cycles with boundaries on the D6-brane. In the simplest case the latter are a basis of
discs ending on a basis of non-trivial 1-cycles on the D-brane world-volume L. This is
illustrated in Fig.1.

geometry such that X is no longer Calabi–Yau. However, this back-reaction does not enter

the computation of the holomorphic functions W (φ) and f(φ) in the supergravity action [32]

and can be neglected for this purpose.
3 This is known as the “decoupling hypothesis” of ref.[8].
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moduli in the type IIA compacti-

fication. The imaginary part of a
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in the compactification manifold X.
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holomorphic 2-manifold Γ̂ with non-

trivial boundary on the world-volume

L of the wrapped D6-brane.
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Fig 1.b Open and closed string com-

plex structure moduli in the type

IIB compactification. The imaginary

part of a closed string modulus z

measures the volume of a holomor-

phic 3-cycle Γ in the compactification

manifold X. The imaginary part of a

closed string modulus ẑ measures the

volume of a holomorphic 3-manifold

Γ̂ with non-trivial boundary on the

world-volume C of the wrapped D5-

brane.

There are also moduli for gauge fields on the 2-manifolds Γa and Γ̂β , namely the
B field in the closed string sector and the gauge field A on the D-brane world-volume
in the open string sector. They promote the above volume moduli to complex scalar
fields in four dimensions.

A similar discussion holds for the type IIB string, where the superpotential W (zA)
depends on the complex structure type of moduli. Again there is a contribution from
the closed string sector that measures volumes of closed 3-manifolds in X and specifies
the complex structure of X . Again moduli from the open string sector arise from
the volumes of 3-manifolds with boundary on the wrapped D-brane, if we restrict to
D5-branes wrapped on 2-cycles within X . This is the aforementioned condition that
we impose on the dimension of the branes in the type IIB theory. It is expected that
one may generalize this framework also to the more general case, which would involve
branes wrapped entirely on X and with non-trivial gauge field backgrounds on the
world volume. However the precise form of such a generalization is not known at the
present time.

To compute a term in the effective string action for an open-closed type II back-
ground as described above from the fundamental string theory, one computes a 2d
correlation function in the conformal field theory (CFT) on the string world-sheet.
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The general relation may be sketched as

〈S.T.〉eff =
∑
Σ

〈CFT 〉Σ, (5)

where the l.h.s. is a specific effective vertex in the space-time theory and the r.h.s is
a sum of conformal field theory correlators associated with it, defined on string world-
sheets Σ. In general, the right hand side is hard to compute as it gets contributions
from an infinite number of world-sheet topologies, representing the expansion in string
loops. In addition there are also quantum effects on the world-sheet Σ of the string.

However, it has been known since quite some time that special F-terms in the
effective space-time theory get contributions only at a fixed topology of the string
world-sheet [7][6][29]. These are the terms

∫
d4x

∫
d2θFg,h(φ)W2g(hN)(W 2

α)
h−1 (6)

where W is the superfield containing the graviphoton field strength and Wα is the
spinor superfield for the world-volume gauge fields on the D-brane. Moreover g is the
number of handles and h is the number of boundaries of the string world-sheet Σ. In
particular, (g, h) = (0, 1) corresponds to the N = 1 superpotential and (g, h) = (0, 2)
to the gauge kinetic function

W (φ) = F0,1, f(φ) = F0,2.

Moreover, the moduli dependent functions Fg,h(φ) are the partition functions of a
topological version of the type II string. This requires an explanation. In the CFT
correlation functions, corresponding to the very special amplitudes (6) by the general
relation (5), only a tiny subset of the string states contributes. In fact these states are
the degrees of freedom of a “topologically twisted” world-sheet theory, whose dynamics
is by far simpler then that of the original 2d theory for the world-sheet of the physical
type II string. Thus the amplitudes of this topological string, which can be computed
exactly by the methods discussed below, are identical to the amplitudes of the physical
string theory (only) for the subset of correlation functions entering the space-time
couplings (6).

Of course we will not have the time here to discuss the computation of the effective
action in detail, except for some key points. The perhaps most important aspect, which
makes contact with the title of this talk, is a symmetry between different type IIA and
type IIB backgrounds, called mirror symmetry. Essentially, mirror symmetry is a so-
phisticated version of T-duality. In the present context, it identifies the type IIA string,
compactified on the open-closed string background (X ;Nk,Mk) with a type IIB theory
compactified on a different background (X ′;N ′

k,M
′
k). Although mirror symmetry is

believed to be a non-perturbative symmetry, it matches the perturbative expansions
on both sides (as T-duality is a perturbative concept). The mapping between X and
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its so-called mirror manifold X ′, as well as between the fluxes and branes on the two
manifolds, is known.4.

The important rôle of mirror symmetry is due to the fact that the two equivalent
type II backgrounds give two very different descriptions of the same physical system.
The type IIA theory comes with a natural weak coupling expansion which, usually,
makes it easy to identify the microscopic degrees of freedom and a perturbatively
defined effective theory for the space-time physics. The weak coupling limit is the limit
in which the volumes of the holomorphic 2-manifolds, measured by the Kähler type
moduli tA, get large and thus the instanton corrections are exponentially suppressed.
The holomorphic couplings in the type IIB theory, on the other hand, do not come with
an obvious weak coupling expansion. The crucial difference to the type IIA theory is
that there are no world-sheet instantons at all and a single, classical CFT correlator
gives the exact result for the holomorphic amplitudes (6). On one hand, the lack of
instanton effects makes it hard to identify a weak coupling description of the space-time
physics in terms of a known, perturbatively defined effective theory. On the good side,
it is the key point for the exact computability of the effective action for the open-closed
type II background: after all, a classical string computation is not that difficult.

Putting the two mirror descriptions together, however, leads to a powerful frame-
work for both, understanding and computing the space-time physics. In practice, one
may first identify the type IIA background for an interesting space-time theory, say
a string theory embedding of SU(N) Yang-Mills theory, by taking the genuine weak
coupling limit in which instanton effects are suppressed. Mirror symmetry allows to
map the string background to an equivalent type IIB compactification, where the exact
couplings (6) may be obtained by a classical computation. In some sense the rôle of
the two descriptions may be compared to the similar situation in asymptotically free
Yang-Mills theory: in the UV, weak coupling regime, the perturbative description in
terms of weakly coupled gauge bosons is valid. While in the confined IR region, the
relevant degrees of freedom are gauge singlets and an underlying, perturbative gauge
theory description is not evident. Of course the latter phase would correspond to the
type IIB description in the above sense; once again, its remarkable property is that in
this case, it can be computed exactly from the classical string theory.

Let us illustrate the above discussion at the hand of the N = 1 superpotential,
which is also the best understood case. The open-closed type IIB background we
consider is defined by the Calabi–Yau manifold X , RR background fluxes on the odd-
dimensional cohomology H3(X) and D5-branes wrapping 2-cycles Cν inside X . The
background fluxes lead to the following geometric expression for the superpotential
[14,30,26]:

Wcl(za) =
∫

Ω ∧H =
∑
α

Nα ·Πα(za). (7)

The parameters Nα in (7) specify the integer 3-form fluxes on X , as in (4). This
superpotential depends on the vev’s of the closed string moduli za, which represent

4 For a modern perspective of the mirror map on type II strings and D-branes, as well as

for references to the earlier literature, see [15,16].
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scalars in N = 1 chiral multiplets. As mentioned earlier, these moduli measure the
volumes of the odd homology of X , which is encoded in the period vector Πα of the
holomorphic (3, 0)-form Ω on X :

Πα =
∫

Γα

Ω(za), Γα ∈ H3(X,Z).

The parameters Nα in (7) specify the integer 3-form fluxes on X .
On the other hand, the background D-branes wrapped on Cν lead to an additional

superpotential [3,34,18]:

Wop(za, ẑβ) = Nν ·
∫

Γ̂ν

Ω(za) =
∑

ν

Nν ·Πν(za, ẑβ) . (8)

that depends on the open string moduli zβ in addition to the closed string moduli za.
As explained earlier, these open string moduli measure the volumes of 3-manifolds Γ̂ν

with boundaries lying on the wrapped D-brane on Cν .
The combined superpotential

WN=1 = Wcl(za) +Wop(za, ẑβ) ≡
∑
Σ

NΣ · ΠΣ(zA), (9)

has a nice geometric interpretation in terms of defining a Hodge structure on a certain
cohomology group [25,21,22]. Specifically this group may be defined as the dual of
the relative homology group H3(X,∪Cν), which is a homology group defined modulo
boundaries on the D-branes. It combines the 3-cycles Γα associated with the closed
string moduli and the 3-chains Γ̂ν associated with the open string moduli.

The interpretation in terms of a Hodge structure on the relative cohomology leads
to a quick determination of the instanton expansion of the exact superpotential for
two reasons. Firstly, the Hodge structure defines a natural weak coupling expansion in
terms of new coordinates tA, defined by a special set of integrals

tA(zB) =
∫

Γ̃A

Ω . (10)

The relation (10) between the weak coupling coordinates tA and the original complex
structure type moduli zA is called the N = 1 mirror map [25]. In fact the coordinates
tA are precisely the weak coupling coordinates for the perturbative expansion in terms
of world-sheet instantons of the type IIA model mirror, as defined in [29,3,4].

The second simplification arising from the mathematical framework of a Hodge
structure is that it gives a system of linear differential equations for all the integrals of
Ω appearing in (9) and (10). The solution to these equations, and thus the instanton
expansion of the superpotential, can be easily computed by standard methods.

The fact that genuine space-time instanton expansions in four-dimensional N = 1
string backgrounds can be computed exactly in such a simple way appears like an
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unexpected miracle. Technically the main simplification arose from the fact that the
space-time couplings (6) are computed by the simpler, topological version of the world-
sheet theory. Is there a more physical interpretation of this unexpected simplification?

An explanation of this kind may be well originating from the high symmetry of
string theory, especially a group of “duality symmetries” of the effective space-time ac-
tion, under which the theory transforms in an interesting way. If such a duality group
exists, then the moduli dependent functions in the effective action are of a very special,
“automorphic” type, as they must transform properly under the duality transforma-
tions. E.g. for the duality group SL(2,Z), associated with reparametrizations of the
complex structure τ of a 2-torus, the transformation behavior, together with the asymp-
totic behavior at special points, uniquely fixes a holomorphic function f(τ). Similarly
the existence of a more general, non-trivial duality group in the four-dimensional open-
closed string theories considered here, would naturally lead to substantial restrictions
on the moduli dependence of the effective action.

In fact there is a beautiful interpretation of the holomorphic partition functions
Fg,h which uncovers at least part of their special structure [29]. By interpreting the
same partition functions as the result of certain one-loop amplitudes in the strong-
coupling limit of type IIA, described by M-theory, one arrives at the prediction that
these functions have miraculous integrality properties. E.g., in the case of the D-brane
superpotential the prediction is that its instanton expansion is of the form

W (tA) =
∑
{nC}

N{nC}
∞∑

k=1

1
k2

(∏
C

e2πiknCVol(C)
)
, (11)

where the label C runs over all the holomorphic curves in X and the sum is over the
wrapping numbers nC of the world-sheets around these curves C. The remarkable
fact is that the coefficients N{nC} of the instanton expansion count the “number” of
possible wrappings in X with given numbers {nC} and are integers. This is certainly
a highly distinguished property of the effective string superpotential, as compared to
the general expression expected from a generic supergravity theory. Such integrality
properties are familiar from automorphic functions of certain discrete groups, making
contact to the above comments on the duality symmetries of the theory.

We conclude this overview with a list of references where some results and argu-
ments can be looked up.

The space-time interpretation of the flux-induced superpotential in terms of gaug-
ino condensation in an embedded Yang-Mills theory has been studied in [30][26]. In
particular it has been shown that the superpotential breaks supersymmetry only in the
theory coupled to gravity, making contact to claims in the earlier literature [28]. An
extremely powerful framework to “engineer” flux configurations associated with more
general superpotentials in a large class of Yang-Mills theories has been described in
[32]. One of the ideas is that a weakly coupled D-brane configuration, describing the
UV regime of an asymptotically free Yang-Mills theory embedded into string theory,
flows in the IR to a strongly coupled phase described by a different geometry, where
the branes have been replaced by the fluxes. Thus this transition gives a beautiful
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geometric realization of confinement of the D-brane gauge fields that have disappeared
in the flux phase. In this way a large class of more general flux superpotentials for a
large class of asymptotically free Yang-Mills theories have been studied in [9,11].

The computation of the D-brane superpotentials (8) has been pioneered in [3],
based on the original work [33] on topological open strings. This was also studied in
[31,8,18,4,25,12,17,5,21,22,1,10]. The B-model description of the combined flux and
brane superpotential in terms of a mixed Hodge structure on the relative cohomology
group is given in [25,21,22].

It is worth mentioning, that the holomorphic partition functions Fg,h are also
computable in the type IIA theory, by summing up the corrections from world-sheet
instantons “by hand”. This may be somewhat tedious in practice, but can be done
systematically for non-compact toric varieties. This has been done for a class of non-
compact D-brane geometries in [23,19,13,27].

Yet another, extremely powerful approach to determine the partition functions
Fg,h in the A-model, is the computation in the Chern-Simons theory [33] that de-
scribes the internal world-volume theory of the D6-brane in the type IIA background
[2,10,24]. Most remarkably, this computation leads to closed expressions for all world-
sheet topologies.

There are many more interesting works on various aspects which may be found in
the references to the references and have been omitted here for lack of space.

Acknowledgments: This work was supported by the Deutsche Forschungsgemein-
schaft.
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