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Abstract

The idea of deconstructing higher dimensional gauge theories is reviewed. Its

several potential physical applications are also discussed.

Higher dimensional gauge theories o�er interesting new tools to understand the roots
of the Standard Model. Among other things, gauge symmetries can be broken by com-
pacti�cation process on singular manifolds, e.g. on orbifolds. Moreover compacti�cation
on orbifolds is a simple mechanism to generate chirality in four dimensions. Gauge theo-
ries on orbifolds may o�er new solutions to the hierarchy problem, with the electroweak
scale calculated in term of the compacti�cation radius R. Another important virtue of
higher dimensional theories is the possibility of localizing wave functions in extra di-
mensions. This can explain the hierarchy of various physical parameters, e.g. fermion
masses, as a result of a small overlap of wave functions localized at di�erent positions in
extra dimensions. Also, this may be a tool to solve the doublet-triplet splitting problem
in Grand Uni�ed Theories. However, gauge theories in more than four dimensions are
non-renormalizable and some quantum problems cannot be addressed in an unambiguous
way.

It has recently been demonstrated that the physics of higher dimensional gauge the-
ories can be reproduced in certain four dimensional gauge theories with enlarged gauge
symmetry. For example, the correspondence exists between �ve dimensional gauge the-
ories with the gauge group G and four dimensional gauge theories with the gauge group
G replicated N times, G × G × · · · × G. The four dimensional theory is referred to as
'latticized' or 'deconstructed' and can be viewed as a renormalizable completion of the
higher dimensional theory. A more general view on deconstruction is that, inspired by
higher dimensional gauge theories, one arrives at a class of purely 4d renormalizable gauge
theories that o�er (and often generalize) similar bene�ts to those of higher dimensional
gauge theories with no need of extra dimensions at all.

Let me �rst recall the correspondence between the four-dimensional theory constructed
in [1,2] and the gauge interactions in 4+1 dimensions. A gauge theory, e.g. with SU(n)
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gauge symmetry, in 5 dim has three free parameters: the cut-o� scaleMs, the dimensionful
coupling constant

g0 = 1/
√
M ≡ g5/

√
Ms (1)

and the compaciti�catin radius R (we assume that Ms � 1/R). The physics seen in
four dimensions is obtained by integrating out the �fth dimension. The simplest com-
pacti�cations are on a circle S1 or on an orbifold S1/Z2. In the latter case the four
components of the vector potential Aµ(xµ, x5), µ = 0, 1, 2, 3, are even under Z2 and the
�fth component A5(xµ, x5) is odd (here and in the following gauge group indices are sup-
pressed). Fourier expanding in the discrete �fth component of momentum we de�ne the
four-dimensional degrees of freedom (Kaluza-Klein modes): vectors An

µ(xµ), n = 0, 1, . . .,
and scalars An

5 (xµ), n = 1, . . .. In the compacti�cation on orbifold there is no zero mode
of A5 and, actually, A5(xµ, x5) can be gauged away. If we compactify on a circle, the zero
mode of A5 remains in the physical spectrum (as a scalar in the adjoint representation
of the SU(n) group) and the massive vector KK modes are doubled. For the orbifold
compacti�cation, in the axial gauge A5 ≡ 0, the e�ective Lagrangian after integrating
over x5 contains the following well known terms:

zero-mode kinetic term invariant under SU(n) gauge transformations in four dimen-
sions,

−1

4
F (0)

µν F
(0)µν (2)

were

F (0)
µν = ∂µA

(0)
ν − ∂νA

(0)
µ + g̃fA(0)

µ A(0)
ν (3)

and g̃ = g5/
√
MsR, with the coupling g5 de�ned by equation (1);

KK kinetic and mass terms

N∑
n=1

(∂µA
n
ν − ∂νA

n
µ)2 +

N∑
n=1

(
nπ

R

)2

An
µA

nµ (4)

and triple couplings and quartic couplings of the zero mode and K-K modes.
The structure of couplings re�ects conservation of the �fth component of momentum.

The truncation in the number of KK modes in understood, n < N where N ≈ MsR, so
that MN < Ms. The e�ective Lagrangian has four-dimensional SU(n) gauge invariance,
with massive KK modes transforming linearly under the adjoint representation of SU(n),
but the full gauge invariance of the �ve-dimensional Lagrangian is lost because of the
truncation n < N . The theory is manifestly non-renormalizable.

The renormalizable four-dimensional theory that, in its infrared region, generates the
interactions described by the truncated Lagrangian is as follows [1,2]. Let us consider the
gauge structure

SU(n)0 × SU(n)1 × · · · × SU(n)N ≡ SUN+1(n) (5)

where the vector potentials are Aa
jν and the dimensionless gauge coupling constants are

equal for all of the SU(n) symmetries, g4j ≡ g4. We suppose, in addition, that there
is a set of scalar �elds Φj(j = 1, . . . , N) (elementary or e�ective) which transform as
(n̄, n) under SU(n)j−1 and SU(N)j groups. We shall call Φjs the link-Higgs �elds. Their
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transformation properties de�ne the links to be nearest neighbors. The Lagrangian reads

L = −1

4

N∑
i=0

F a
iµνF

aiµν +
N∑

i=1

(DµΦ)†iD
µΦi + V (Φi) (6)

where Dµ = ∂µ + ig4
∑n

i=0 A
a
iµT

a
i (T a

i are generators of the i th SU(n)i gauge symmetry),
and the potential has full chiral symmetry SUN (n) × SUN(n) and is symmetric under
interchange Φj → Φi.
If the dynamics of the scalar sector (described here by the potential V (Φj); the scalars Φj

can be replaced by technicolour-like condensates [1]) is such that the diagonal components
of the scalars Φj acquire a vacuum expectation value v, the chiral symmetry of the link-
Higgs sector is spontaneously broken SUN(n) × SUN (n) → SUN(n) leaving N Nambu-
Goldstone bosons, each transforming under the adjoint representation of SU(n). The
gauge symmetry SUN+1(n) of the full Lagrangian is also spontaneously broken to the
diagonal SU(n) and n vector bosons acquire masses eating up the Nambu-Goldstone
bosons. If we want to have a four-dimensional model corresponding to a compacti�cation
on a circle, we introduce one additional link-Higgs �eld Φ0 transforming as (n0, n̄N ).
The chiral symmetry of the Higgs sector is now SUN+1(n) × SUN+1(n). Its breaking to
SUN+1(n) leaves N + 1 Nambu-Goldstone bosons and N of them, as before, are eaten
up by longitudinal components of N vector bosons. Thus, one massless scalar remains in
the spectrum [3], in exact correspondence to the zero mode of A5 in the �ve-dimensional
theory. The massless scalar transforms under the adjoint representation of the diagonal,
unbroken, SU(n) symmetry.

The physics of our renormalizable four-dimensional theory below the scale v of spon-
taneous gauge symmetry breaking can be easily studied in detail in the nonlinear σ-model
approximation. For the orbifold compacti�cation, upon substituting

Φj → v exp(iφa
jT

a/2v) (7)

the Φj kinetic terms lead to a mass matrix for the gauge �elds

N∑
i=1

1

2
g2
4v

2(Aa
(i−1)µ − Aa

iµ)2 (8)

This mass matrix has the structure of a nearest-neighbor coupled oscillator Hamiltonian.
We can diagonalize the mass matrix to �nd the eigenvalues:

Mn =
√

2g4v sin
[
γn

2

]
γn =

nπ

N + 1
n = 0, 1, . . . , N. (9)

Thus we see that for small n this system has a KK tower of masses given by

Mn ≈ g4vπn√
2(N + 1)

n 
 N (10)

and n = 0 corresponds to the zero mode.
To match on to the spectrum of the KK modes, we require

g4v√
2(N + 1)

=
1

R
. (11)
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Hence, the system with SU(n)N+1 and N Φi is provides a description of the KK modes
of the 5d theory by generating the same mass spectrum.
Next, it is crucial to examine the interactions from the model. The gauge �elds Aj

µ can

be expressed as linear combinations of the mass eigenstates Ãn
µ as

Aj
µ =

N∑
n=0

ajnÃ
n
µ. (12)

The anj form a normalized eigenvector ( an) associated with the nth n �= 0 eigenvalue and
has the following components:

anj =

√
2

N + 1
cos

(
2j + 1

2
γn

)
j = 0, 1, . . . , N. (13)

The eigenvector for the zero mode, n = 0 is always  a0 = (1/
√
N + 1)(1, 1, . . . , 1). We can

now rewrite the Lagrangian equation (6) in the mass eigenstates of the vector bosons (Ãn
µ)

and derive the interactions between them. They are identical to those of the 5d theory,
with the identi�cation

g̃ =
g5√
MsR

=
g4√

(N + 1)
. (14)

In the 4d theory, there are three relevant parameters, namely, the gauge coupling constant
g4, the total number of SU(n) groups N + 1 and the vacuum expectation values v of the
Higgs �elds v determined by the potential V (Φi). The mapping between them and the

parameters of the 5d theory are N + 1 = MsR, g4 = g5 =
√
Ms/M and v =

√
MsM .

We conclude that the physics of the 4d theory below the scale v of spontaneous gauge
symmetry breaking is the same as that of 5d theory with cut-o�. That correspondence
does exist for supersymmetric gauge theories, too [4]. Suppose we raise the scalar �elds
in the previous model (the one corresponding to compacti�cation on a circle) to 4 dim,
N=1 chiral multiplets and we introduce vector super�elds Vj, j = 1 . . .N associated to
the gauge group SU(n)j :

Φi(ϕi, ψi) and Vj(A
a
j , λ

a
j ) (15)

After the diagonal breaking we can identify 4 dim N = 2 massless vector


Aµ

λ ψ
ϕ




2 components
4 components
2 components

(16)

and N − 1 4 dim N = 2 massive vectors


Aµ

λ ψ
ϕ




3 components
4 components
1 components

(17)

in exact correspondence to the zero-mode and K-K modes of 5 dim vector multiplet


Aµ

ψ
φ




3 components
4 components
1 components

(18)
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Thus, the 4d N =1 SU(n)N gauge theory is broken at the scale v to 4d N =2 SU(n)
diagonal gauge theory. Similar correspondence exists after including hypermultiplets and,
as it will be discussed later on, for chiral theories compacti�ed on S1/Z2 orbifold. As
another extension of those ideas, it was also shown that the 5d and 4d theories show the
same non-perturbative structure [5].

One should stress that the correspondence between the 5d and 4d theories holds only
below the scale v of the breaking of the gauge symmetry of the latter to the diagonal
subgroup. Generically, the 4d theory contains above the scale v more active degrees
of freedom with the masses m>

∼0(v) which do not have any extra dimensional inter-
pretation. For instance, a supersymmetric 'aliphatic' model [4] which mimices in its
IR a supersymmetric gauge theory compacti�ed on S1/Z2 has chiral anomalies in the
�rst and the N th gauge group caused by the missing of the link super�eld φ(n̄N , n1).
They can be canceled by adding super�elds φ(n̄) and φ(nN) in the adjoint representa-
tions of the respective gauge groups. They can be given masses 0(v) by the superpoten-
tial W = 1

vN−2φ(n̄1)φ(n1, n̄2) . . . φ(nN−1, n̄N )φ(nN). (Another possibility to cancel those
anomalies is of course, to use the Green-Schwarz mechanism.)

One should also mention that the nature of the correspondence between the extra
space dimension and the 'group product space' is, in general, quite subtle and the precise
lattice interpretation can be used only in the simplest cases (e.g. for pure gauge theories
compacti�ed on a circle). The two classes of the theories should rather be compared at
the level of e�ective theories in four dimensions: the 5d theory- after integrating out the 5
th dimension, and the 4d theory - after breaking the full gauge symmetry to the diagonal
subgroup.

We can summarize this discussion as follows: 'Deconstruction' is a prescription for a
gauge invariant and renormalizable regularization of d > 4 dimensional gauge theory by
reduction to 4d. For instance, the power-law like running of the gauge couplings in �ve
dimensions [6,7] can be discussed in the renormalizable setting. In the 4d theory, the
running is logarithmic but with the β function changing every time we pass the threshold
Mn [2]. In the limit of large N one recovers power-law-like running. However, a more
general attitude to deconstructing higher dimensional gauge theories is to consider a class
of 4d theories that implement many seemingly extra dimensional ideas, even with small N
and including also models with no obvious extra dimensional correspondence. Thus, we
can talk about model building in 4d inspired by extra dimensions with extra dimensional
bene�ts. But at the end extra dimensions are not there.

In fact, theories with replicated gauge groups and bi-fundamental matter have already
been discussed in the literature in various contexts. The results of ref. [1,2] encourage to
their further exploration and suggest they may be a model building tool complementary to
higher dimensional gauge theories. Two particularly interesting examples of such theories
discussed earlier and related to the recent developments are SU(5)×SU(5) GUT models
[8], and the quiver theories [9] widely discussed in the context of the search for CFT's and
of AdS5/CFT correspondence.

We shall now discuss brie�y a few potentially interesting possibilities o�ered by the-
ories with replicated gauge groups, inspired by the idea of deconstruction. The Grand
Uni�ed Theory based on the SU(5)×SU(5) group broken spontaneously to the diagonal
Standard Model group has been revived in ref. [10], as an solution to the doublet-triplet
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splitting problem and as an explanation of the hierarchy of the fermion masses. A discrete
symmetry in a four-dimensional SU(5) model commutes with SU(5), modulo a standard
model gauge transformations. Such a discrete symmetry leaves the doublet mass term
HH̃ in the superpotential invariant if and only if the triplet QQ̃ terms is invariant. So
such a discrete symmetry cannot solve the doublet-triplet splitting problem. However,
starting with the SU(5) × SU(5) group it is easy to �nd unbroken discrete symmetries
with the desired properties. The same symmetry can explain the hierarchy of fermion
masses. Other solutions to the doublet-triplet splitting problem, also in the framework of
theories with replicated GUT groups, have been proposed in ref.[11].

Theories inspired by the deconstruction idea often show interesting structure at the
level of quantum corrections and give new insight to the hierarchy problem. In the bottom-
up approach to the hierarchy problem one may be tempted to take the following attitude:
rather than solving perturbatively the hierarchy problem to a very high scale, postpone
'sensitive' (∧2) UV dependence of the electroweak symmetry breaking mechanism, using
perturbative physics, to a scale ∧>

∼0(10TeV). In other words, the question is this: can
one solve the hierarchy problem if a non-perturbative cut-o� to the Standard Model is at
∧>

∼0(10TeV) (and neither at ∧ ∼ 0(1 TeV) nor at ∧ ∼ MPL). In practice, one then looks
for theories with δm2

H �nite (or at most logarithmically divergent) at one-loop level, but
not necessarily in higher orders of perturbation theory.

One class of models inspired by deconstruction and discussed in the above context
are non-supersymmetric models with the Higgs boson appearing as a pseudo- Goldstone
boson [12]. This mechanism has its correspondence in higher dimensional gauge theories
with a Higgs boson as a gauge boson in extra dimensions. Models based on deconstruction
have the virtue of a large collection of symmetries protecting the Higgs mass.

The basic idea underling that approach can be illustrated by the following simple (and
totally unrealistic) example. The scalar sector of the discussed earlier SU(n)N gauge
theory with N link-Higgs �elds in bi-fundamental representations φ(n̄i, ni+1) (cyclic case)
has SU(n)N × SU(n)N 'chiral symmetry (invariance under independent 'left' and 'right'
rotations: φi → UiφiV

+
i ). This symmetry is broken spontaneously by the vevs φi = v1

to the diagonal subgroup SU(n)N . The (N − 1) Goldstone bosons are ' eaten up' by the
gauge �elds when SU(n)N gauge symmetry is broken to the diagonal subgroup SU(n)
and one Goldstone boson remains in the physical spectrum. However, the original chiral
symmetry of the scalar sector is not only broken spontaneously by φi = v1 but it is also
broken explicitly by the SU(n)N gauge interactions. Thus, the Goldstone boson that
remains in the physical spectrum is actually a pseudo-Goldstone boson, with non-zero
radiative corrections to its mass. But, the gauge interactions which break explicitly the
chiral SU(n)N × SU(n)N symmetry of the scalar sector, at the same time, protect the
corrections to the Goldstone boson mass against any divergences! Indeed, the only gauge
invariant operator that contributes to the Goldstone boson mass is [Trφ1φ2 . . . φN ]2 and
for N > 2 it is dim>4 operator; so if generated radiatively, it must have a �nite coe�cient.

Of course, identifying the electroweak Higgs boson with that pseudo-Goldstone boson
is totally unrealistic. The latter is in the adjoint representation of the gauge group and,
moreover, the generated mass is positive. However, more realistic models have been
constructed [13] along similar lines, at the expense of introducing more interactions and
more symmetries. The Higgs boson mass is no longer fully protected from divergences
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but one-loop quadratic divergences are absent.
Using higher dimensional supersymmetric gauge theories, there has also been pro-

posed another approach to the "weak" solution to the hierarchy problem in which the
Higgs boson mass is calculated in terms of the compacti�cation radius, δm2 ∼ f(R,∧),
with weak dependence on the cut-o� scale ∧. In ref. [14] this is achieved by breaking
supersymmetry by the Scherk-Schwarz mechanism. The deconstructed theories o�er an
analogous possibility of calculating the electroweak scale in terms of the deconstruction
scale v, in a renormalizable theory [15]. In ref. [15], the N =1 supersymmetry of the
SU(2)N gauge theory is broken in a hard way, by removing some of the degrees of freedom
within supermultiplets. In consequences, the zero mode spectrum is not supersymmet-
ric. Nevertheless, the one-loop contribution to the Higgs boson mass coming from the
large top quark Yukawa coupling remains �nite and triggers the electroweak symmetry
breaking.

Finally, it is worth mentioning that the structure of deconstructed gauge theories
resembles the U(n)N gauge theories with bi-fundamental matter constructed in open
string compacti�cations [9]. So-called quiver theories are constructed by studying a stack
of D3 branes on orbifolds of R6 transverse to the D-branes. Equivalently, they can be
obtained by orbifolding N = 4 supersymmetric U(Nn) gauge theory in 4d by a discrete
ZN group embedded in the SU(4) R-symmetry group of the N =4 theory. This way
one can construct U(n)N gauge theories with N=2,1 or 0 supersymmetries. The scalar
potential of those theories has �at directions. One of them is φi = vi1 which breaks
U(n)N → U(n)diagonal The stringy interpretation of the diagonal breaking is that branes

are moved away from the �xed points of ZN [16].
The idea of deconstruction provides some phenomenological motivation for quiver

theories. The N =2,1 theories are superconformal so one can contemplate the possibility
of embedding realistic low energy gauge theories (Standard Model?) into superconformal
(�nite) theories with replicated gauge symmetries.

The non-supersymmetric quiver theories are also interesting as they show several in-
teresting properties [17]. In such theories there is equal number of fermions and boson
but they are in di�erent gauge group representations. Nevertheless one �nds [17] no one-
loop quadratic divergences in the e�ective potential (STrM2 = 0 identically) for any
pattern of gauge symmetry breaking (if there are no scalars in the adjoint representa-
tion of one of the (U(n)′s). Moreover , in the deconstruction phase, with φi = vi1 and
U(n)N → U(n)diagonal , one can identify "custodial" supersymmetry: all terms in the

Lagrangian up to terms quadratic in the heavy modes match the structure of N= 1 super-
symmetric theory (the zero mode sector has N= 4 supersymmetry). Therefore it follows
that any nth level spectrum is boson-fermion degenerate and the universal vevs remain
�at direction at one loop. Indeed, STrM2q = 0 and one-loop e�ective potential is zero.
Also, one-loop corrections to the zero mode masses vanish.

Thus, this is an example of a theory with supersymmetry partially restored in the low
energy phase, with gauge symmetry broken to its diagonal subgroup. It remains to be
seen if this fact may have any interesting implications for the hierarchy problem.

In summary, the deconstruction idea shows that theories with replicated gauge groups
broken down the diagonal subgroup are a useful alternative to extra dimensions. Moreover,
they o�er an interesting link to open string theories.
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