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Abstract

A formalism is presented where gauge theories for nonabelian groups can be
constructed on a noncommutative algebra.

1 Introduction

Noncommutative coordinates have been with us almost as long as quantum field theory.
After the awareness of singularities in such theories Heisenberg [1] proposed as early
as 1930 in a letter to Peierls noncommuting space coordinates that lead to uncertainty
relations for these variables and could help to eliminate the singular behaviour e.g. of the
self-mass of the electron without having to introduce a smallest length. Heisenberg could
not formulate this idea mathematically, in this letter he asked for the help of Peierls and
Pauli. Thus this idea propagated via Pauli and Oppenheimer [2] and in 1943 H.S.Snyder,
a Ph.D. student of Oppenheimer, published a paper on “Quantized Space Time” [3].
Snyder treated the coordinates as a Lie-algebra and based on quantum mechanics gave
a profound discussion on the interpretation of such coordinates. Pauli found his work
ingeneous, “however, it seems to be a failure for reasons of physics” [4].

The singularities are still with us. The fight against singularities in quantum field
theory as it was called by Pais, however, proved rather successful. It led to gauge theories
that are capable to describe all the present experimental facts found in our laboratories
(standard model). It led to supersymmetry and in the more ambitious aim to formulate
the law of gravity as quantum gravity it also led to string theory. Many more ideas have
been created and many of them have proved to be “a failure” - so why not try to review
the idea of noncommuting coordinates again. In a way supersymmetry has already gone
in this direction by the use of superspace. Since Snyder’s work our mathematical tools as
well as the experimental art in high energy physics have seen an enormous improvement.

Recently noncommutative coordinates have emerged from string theory as well [6].
Their commutation relations are
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[xµ, xν ] = iθµν (1)

with constant θµν . This example of noncommutative coordinates has found most
attention lately. The mathematical structure is exactly the same as the canonical structure
in quantized phase space. Here we will always deal with the commutation relations [1] as
an algebra for coordinates.

We do not see any sign of noncommutative coordinates at large distances. At small
distances, much smaller than the confinement range, coordinates might not commute.
This should be achieved e.g. by a more complicated x-dependent θµν . We do not know a
proper θµν(x) that could lead to such a property. A constant as well as any polynomial is
certainly a bad approximation to such a function. We could, however, look at processes
that take place at very short distances where a constant nevertheless is a good approxima-
tion. The disappearance of the noncommutativity should then occur at distances where
the process has ceased to be possible. This is in agreement with our theoretical idea that
noncommutativity should cure the ultraviolet behaviour of the theory, thus we expect the
changes at very short distances.

Let me now show what modification of a gauge theory we have to expect as a conse-
quence of [5]. We start from a gauge theory with an arbitrary non-Abelian gauge group.
At this level the particle content of the theory can be fixed by choosing the appropriate
representations. The step to the noncommutative modifications of the theory will be
implemented by a power series expansion in θµν .

The parameter θµν that parametrizes the noncommutativity will now enter the La-
grangian as a coupling constant. To first order in θ the Lagrangian changes as follows:
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F0µν is the usual field strength in a nonabelian gauge theory. We see that to first order
triple vertices of the gauge field occur, giving rise to new phenomenological predictions.

For the coupling of the gague fields to the matter fields we obtain
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Again new couplings of the gauge field to the matter fields occur.
As we do not know much about the renormalizability of the theory there is no notion

of a “minimal coupling”. We consider the Lagrangians as effective Lagrangians, in this
case all gauge invariant couplings are allowed and should be considered.

This formalism can be applied to the standard model with the gauge group SU(3) ×
SU(2) × U(1) [6].

The particle content is the same as in the ordinary standard model. For θ = 0 the
usual standard model is reproduced.

In general the new interactions will contribute to processes already present in the
standard model. Due to the tensorial character of the “coupling constant” θµν Lorentz
invariance will be violated for the new interactions. This makes these contributions dif-
ferent from the usual ones and it leads to signatures by which these interactions can be
identified. The most interesting case is when the new terms lead to a process that is not
allowed in a usual local and Lorentz invariant quantum field theory. An example is the
Z0 → γγ decay [7]. Forbidden in conventional QFT, it can be obtained to first order in
θ:

LZ0→γγ =
e

8
sin 2θW

(
g′2κ1 + (g′2 − 2g2)κ2

)
θρτ

[
2Zµν (2AµρAντ − AµνAρτ )

+8ZµρA
µνAντ − ZρτAµνA

µν
]
, (4)

where the constants κ1, κ2 are defined in reference [8].
This leads to a partial width ζ in the rest frame of Z, spin averaged

ΓZ→γγ =
α

12
M5

Z sin2(2ΘW )K2(g, g′)
[

7

3
�Θ2

T + �Θ2
S

]
(5)

Details can be found in ref [8].
A similar argument holds for processes like

Υ → γγ, B → Kγ, K → πγ

Even a violation of the CPT-Theorem would be possible [8].

To construct this new class of deformed QFTs a few new ideas have to be incorporated.
1. Noncommutative coordinates [9] have to be accepted. The canonical case (1) is

the simples example. As mentioned before we expect x-dependent θs. At the moment we
only know how to treat examples that are linear or quadratic nx. These in a way are the
first terms in a power series expansion of θ in x.

The constant case is created by Lie algebras. A particularly interesting case is the
Lie-algebra [10]

[xµ, xν ] = i (aµxν − aνxµ) (6)

where aµ is constant. This noncommutative space allows a deformed Lorentz group acting
on it. This is the κ-deformation of the Lorentz group pioneered by Majid, Lukiersky and
Rueckl [10].

The quadratic case is known in the context of quantum groups. These spaces are called
quantum spaces [11] and have been thoroughly investigated within the last twenty years.
The additional structure of a quantum group or a κ-deformed group gives rise to many
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restrictions of the gauge theory to be built by asking for a deformed Lorentz symmetry
of the theory. An investigation of these models is therefore of great interest.

2. A star product [11] as it is known in the deformation quantization can be used to
realize the algebra. In this formalism the objects of the algebra are functions of commuting
variables, the noncommutativity is present in the noncommutative star product. For the
canonical case this is

f � g(x) = e
i
2

∂
∂xµ θνµ ∂

∂yµ f(x) · g(x)
∣∣∣
y→x

(7)

From this star product follows immediately

[xµ �, xν ] = xµ � xν − xν � xµ = iθµν (8)

The star product originally defined for polynomials, extended to formal power series, has
been extended to functions. These functions are the objects in physics, they are identified
with fields.

3. Enveloping algebra valued [12] gauge transformations have to be used. A gauge
theory is based on a Lie algebra:

[Li, Lj ] = if ijk L
k (9)

For the gauge transformation of fields the star product has to be used as well, or, which
is the same, the gauge parameters depend on the noncommutative variables:

δΨ = iΛ(x) �Ψ (10)

The commutator of two such transformations will only close if Λ is enveloping algebra
valued

Λ(x) = α
(0)
i (x)Li + α

(1)
ij (x) :LiLj: + . . .+ α

(n−1)
i1...in

:Li1 · · ·Lin: (11)

The two dots indicate that a basis in the algebra is used. Completely symmetrical poly-
nomials form such a basis.

For commuting variables Lie algebra valued transformations close, it is consistent
to put αn = 0 for n �= 1. The transformation depends on a finite set of parameters
α0
i (x). The enveloping algebra valued transformations seem to depend on an infinite

set of parameters. It is, however, possible to express these parameters in terms of the
parameters α0

i (x) and the usual Lie algebra valued gauge field Aµ(x) = Ai
µ(x)T i with the

transformation properties

δAµ = ∂µα
0 + i[α0, Aµ]

α
(r−1)
i1...ir

(x) = Λr−1
i1...ir

{α0
i (x), Ai

µ, ∂} (12)

This is part of the Seiberg–Witten map. We now denote a transformation that uses these

parameters α(r) as follows
δα0Ψ = α(x) �Ψ (13)

If we apply a second transformation we have to transform Aµ as well. It is now possible
to find expressions α(r) in terms of α(0), Aµ and their derivatives such that

(δα0δβ0 − δβ0δα0)Ψ = δ[α0,β0]Ψ (14)
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This equation determines α(r) to a large extent. The problem is formulated in power series
expansion in θ. To first order in θ we find

α = α0 +
1

2
θµν :∂µα

0(x)Aν(x): + . . . (15)

4. Covariant coordinates. The transformation law of Â allows the construction of
covariant coordinates. Due to the noncommutativity coordinates will not commute with
the gauge transformation, a situation similar to derivatives in a usual gauge theory. Taking
the idea from covariant derivatives one can try the following Ansatz

X̂µ = x̂µ + Âµ (16)

δα0X̂
µ � Ψ̂ = iα � X̂µ � Ψ̂ (17)

This defines the transformation law for Âµ.
A field strength can be introduced in complete analogy:

X̂µX̂ν − X̂νX̂µ = iθµν + F̂ µν (18)

the field strength transforms tensorially

δαF̂
µν = [α � F̂ µν ] (19)

and can be used to construct invariant Lagrangians. This leads to the theories discussed
at the beginning.

5. Seiberg–Witten map [13]. This is the most important new idea. One part is
contained in the construction of the transformation parameter α, but it is also possible
to express the new gauge field and the matter fields that transform as follows:

δΨ̂ = iα � Ψ̂ (20)

δÂµ = −i[xµ �, α] + i[α �, Âµ]

in terms of fields that transform as usual

δΨ = iα0Ψ (21)

δAµ = ∂µα0 + i[α0, A
µ]

The new gauge potential is enveloping algebra valued.

Ψ̄ = Ψ +
1

2
θµνAν∂µΨ +

1

4
θµν∂µAνΨ + . . .

Âµ = Aµ +
1

4
θρν{Aν(∂ρAµ + Fρµ)} + . . . (22)

This opens the way to construct gauge field theories with the star product without chang-
ing the particle content.

6. Invariant Integrals
An invariant action can only be defined if we know how to integrate. The integration

must have the property ∫
f � g =

∫
g � f (23)

for constant θ the usual integral in x-space has this property .

Let me now go into more detail and show how in putting these new ideas together
Lagrangians as we have discussed them in the beginning can be constructed.
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2 The algebra

Let me first exhibit the algebraic structure of Rn and then generalise to noncommutative
coordinates. The coordinates x1 . . . xn ∈ Rn are considered as elements of an associative
algebra over C. The algebra, freely generated by these elements, will be denoted by
C [[x1, . . . , xn]]. The two brackets indicate that formal power series are allowed in the
algebra.

The elements of this algebra are then subject to relations that make them commutative:

R : xixj − xjxi = 0. (24)

These relations generate a two-sided ideal IR; it consists of all the elements of the algebra
C [[x1, . . . , xn]] that can be obtained from the relation (1) by multiplying (1) from the left
and the right by all possible products of the coordinates. We factor out this ideal and
obtain the desired algebra:

Ax =
C [[x1, . . . , xn]]

IR
. (25)

The elements of this algebra are the polynomials and the formal power series in the
commuting variables
x1, . . . , xn ∈ R.

f(x1, . . . , xn) ∈ Ax, (26)

f(x1, . . . , xn) =
∞∑

ri=0

fr1...rn(x1)r1 · . . . · (xn)rn.

Multiplication in this algebra is the pointwise multiplication of these functions.
This algebraic concept can be easily generalized to noncommutative coordinates. We

consider algebras, freely generated by elements x̂1, . . . x̂n, again we call these elements
coordinates, but now they are supposed to satisfy relations that make them noncommu-
tative:

Rx̂,x̂ : [x̂i, x̂j] = iθij(x̂). (27)

Following L.Landau, noncommutativity carries a hat. Again the relations (4) generate an

ideal and we define our algebra Âx̂ as follows:

Ax̂ =
C[[x̂1, . . . , x̂n]]

IRx̂,x̂

, (28)

f̂ ∈ Âx̂.

We impose one more condition on the algebra. The vectorspace of the homogeneous
polynomials of degree m, V̂ m

x̂ should have the same dimension as V m
x . Algebras of this

type are said to have the Poincare-Birkhoff-Witt property. In the following we shall
consider such algebras only.

3 The � product

The vectorspaces V m
x and V̂ m

x̂ are finite-dimensional, thus they are isomorphic. To es-
tablish an isomorphism we map a given basis of one space into a given basis of the other
space. This then defines a vectorspace isomorphism between the vectorspaces V̂x̂ and Vx.
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We now change the algebra Ax to extend the above vector space isomorphism to an
algebra isomorphism. For this purpose we have to change the multiplication law in Ax.
When we multiply two elements in Âx̂ we can compute from the multiplication law in
Âx̂ the coefficient function of the product in a given basis. We define the product in the
vectorspace Vx to be the element with the same coefficient function as it was calculated
in Âx̂. This multiplication rule we call � (star) product and this defines the algebra �Ax.

The algebras Âx̂ and �Ax are isomorphic.

It is natural to use the elements of �Ax as objects in physics. The pointwise product
has to be replaced by the � product. In all the cases of interest the � product can be
expressed with the help of a differential operator. This makes it possible to extend the
� product to functions without referring to power series expansion. Thus we treat the
elements Ax like ordinary fields but replace the pointwise product by the � product. This
would be the starting point of deformation quantization. As we have based the concept
on associative algebras, associativity of the � product is guaranteed.

4 Gauge theory

In this context it is possible to formulate a gauge theory [3, 4, 5]. We start from a Lie
algebra:

[T a, T b] = ifabc T
c. (29)

In a usual gauge theory on commutative spaces the fields will span a representation of
this Lie algebra and they will transform under the usual gauge transformation with Lie
algebra valued parameters:
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δα0ψ(x) = iα0(x)ψ(x). (30)

(δα0δβ0 − δβ0δα0)ψ = −(β0α0 − α0β0)ψ

= i(α0 × β0)ψ = δα0×β0ψ, (31)

α0 × β0 ≡ α0
aβ

0
b f

ab
c T

c.

The commutator of two such transformations remains Lie algebra valued.
For a theory on non-commutative spaces we start with fields that are elements of �Ax.

Gauge transformations have to be defined with the � product:

δαψ(x) = iα(x) � ψ(x) (32)

The star product of functions is not commutative. The commutator of two Lie algebra
valued transformations does not reproduce a Lie algebra valued parameter. Thus we shall
assume that the infinitesimal transformation parameters are enveloping algebra valued
[2]:

α(x) = α0
a(x)T a + α1

ab(x) : T aT b : + . . .+ αn−1
a1...an

(x) : T a1 · . . . · T an : + · · · (33)

We have adopted the :: notation for a basis in the enveloping algebra of the Lie algebra.
Completely symmetrized products could serve as a basis:

: T a : = T a, (34)

: T aT b : =
1

2
(T aT b + T bT a) etc.

The commutator of two transformations is certainly enveloping algebra valued.

(δαδβ − δβδα)ψ = [α �, β] � ψ. (35)

The disadvantage of this approach is that infinitely many parameters αn(x) have to be
introduced.

It is a surprise that it is possible to define gauge transformations where all the pa-
rameters αn(x) depend on the finite set of parameters α0(x) (Lie algebra valued) and in
addition on the gauge potential a(x) of a usual gauge theory and on their derivatives.
The gauge potential a(x) has the usual transformation properties:

δai = ∂iα
0 + i[α0, ai], (36)

δai,a = ∂iα
0
a − α0

bf
bc
a ai,c.

We will call the new type of transformation parameters Λα0(x). The new transformations
are supposed to close under a commutator into a transformation characterized by (α0×β0):

δα0ψ(x) = iΛα0(x)(x) � ψ(x),

(δα0δβ0 − δβ0δα0)ψ = δα0×β0ψ, (37)

(α0 × β0)a = α0
bβ

0
c f

bc
a .

These equations define Λα0(x). We shall see that all αn(x) in (10) can be defined in terms
of α0(x) and the gauge potential a(x). The transformation property (14) then holds as
a consequence of (13). The solution of this problem, however, is not unique, this will be
seen in the following.

As a consequence of the a dependence of Λ0
α we have to transform Λ0

α under the second
variation in the commutator. This changes equation (12) and this is the reason why the
new approach works.
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5 Constant θ

To illustrate this approach we restrict it to the algebra where θµν is a constant. In this
case we obtain in a fully symmetrized basis the following � product:

(f � g)(x) = e
i
2

∂
∂xi θ

ij ∂

∂yj f(x)g(y)
∣∣∣
y⇒x

(38)

=

∫
dny δn(x− y)e i

2
∂

∂xi θ
ij ∂

∂yj f(x)g(y).

We expand in θ.
Λα0 = α0

aT
a + θijΛ1

α0,ij + . . . , (39)

The � product has to be expanded as well. Finally we expand the defining equation for
Λα0

(δα0δβ0 − δβ0δα0)ψ = i(δα0Λβ0 − δβ0Λα0) � ψ + [Λα0
�, Λβ0] � ψ, (40)

= δα0×β0ψ = iΛα0×β0 � ψ

The zeroeth order in the expansion of (40) defines α0 as Lie algebra valued.
In first order we obtain

θij((δα0Λ1
β0,ij − δβ0Λ1

α0,ij) − i([α0,Λ1
β0,ij] − (41)

− [β0,Λ1
α0,ij])) +

1

2
∂iα

0
a∂jβ

0
b : T aT b := θijΛ1

α0×β0,ij.

A closer look shows that this is an inhomogeneous linear equation for Λ1. The inhomo-
geneous term is known, it contains α0 and β0 only. A particular solution of (17) is:

θijΛ1
α0,ij =

1

2
θij(∂iα

0
a)aj,b : T aT b : . (42)

Any solution of the homogeneous part of (17) can be added to (18).
We can proceed order by order in θ, the structure of the equations will always be the

same. It will be an inhomogeneous linear equation, the homogeneous remains the same,
the inhomogeneous part will contain known quantities only. This way we obtain Λα0 in a
θ expansion.

Λα0 = α0
aT

a +
1

2
θij(∂iα

0
a)aj,b : T aT b : + . . . (43)

Such a construction of the transformation parameter first occured in the context of the
Seiberg–Witten map [6].

6 Covariant coordinates

In a usual gauge theory we would procede with the definition of covariant derivatives
[14]. Derivatives, however, are not a natural concept for algebras. It is more natural to
introduce covariant coordinates. Based on such a concept gauge theories can be developed
as well.
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It is obvious that coordinates do not commute with gauge transformations, it is also
natural to introduce covariant coordinates in analogy to covariant derivatives:

X i = xi + Ai(x), (44)

δα0X i � ψ = iΛα0 � X i � ψ.

This leads to the following transformation law for the gauge potential:

δAi = −i[xi �, Λα0 ] + i[Λα0
�, Ai]. (45)

To satisfy such a transformation law we have again to assume that A(x) is enveloping
algebra valued. In general, this would imply infinitely many gauge fields. For the restricted
gauge transformations Λα0 it is possible to construct a gauge potential that depends on
the Lie algebra valued potential a(x) and its derivatives only. The transformation law
(13) for a(x) will imply the transformation law for A(x). This is the main achievement of
the Seiberg–Witten map (22).

The construction of gauge fields that transform to tensorial follows the usual concept
as we know it from covariant derivatives. An obvious definition is

XµXν −XνXµ − iθµν(X) = F̂ µν (46)

It is chosen in such a way that F̃ µν vanishes for a vanishing gauge potential Aµ.
The tensorial transformation law of F̃ µν follows directly from (22):

δαF̃
µν = [∆α0 � F̃

µν ] (47)

It should be noted, however, that the trace in the representation space of the Lie algebra
of a tensor is not an invariant because the star product is not commutative.

7 The integral

An invariant action can be constructed only if the integral has its trace property:∫
f � g =

∫
g � f. (48)

Integration is not a natural concept in an algebra. It is supposed to be a linear map from
Ax̂ into C. ∫

: Ax̂ → C, (49)∫
(c1f̂ + c2ĝ) = c1

∫
f̂ + c2

∫
ĝ,

In addition the trace property is required:∫
f̂ ĝ =

∫
ĝf̂ . (50)

This is equivalent to (25).
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8 Gauge theory for constant θ

For constant θ the usual integral in x-space will have the trace property. This can be
shown by a direct calculation.

Let us have a look at this formalism for constant θµν : The Seiberg–Witten map:

Ai(x) = θijVj ,

Vj(x) = aj,aT
a − 1

2
θlnal,a(∂naj,b + Fnj,b : T aT b : + . . . , (51)

Fnj,b = ∂naj,b − ∂jan,b + f cdb an,caj,d.

The field strength:

F̃ij = Fij,aT
a + θln(Fil,aFjn,l − 1

2
al,a(2∂nFij,b + an,cFij,df

cd
e )) : T aT b : + . . . . (52)

The Lagrangian:

L =
1

4
TrFij � F

ij. (53)

The invariant action:

W =
1

4

∫
TrFij � F

ij (54)

=
1

4

∫
TrFijF

ij .

New coupling terms arise, θµν appears as a coupling constant, it is a Lorentz tensor
and the interaction term breaks Lorentz invariance. This was to be expected because the
defining relation (1) already breaks Lorentz invariance.

These new terms in the Lagrangian will give rise to new interactions. Due to the
breaking of Lorentz invariance interaction terms will occur that are forbidden in a Lorentz
invariant theory. A good example is the Z0 → γγ decay. From (53) we find the following
interaction terms that contribute to this decay if the gauge theory is based on the standard
model.

LZγγ =
e

8
sin 2θW

(
g′2κ1 + (g′2 − 2g2)κ2

)
θkl (55)

×
(

2(−∂iZk + ∂kZi)∂jAl(∂
iAj − ∂jAi)

+ (∂iAk∂jAl + ∂kAi∂lAj − 2∂kAi∂jAl)(−∂iZj + ∂jZ i)

+ (−2∂kZi∂lAj + 2∂jZl∂kAi + 2∂iZj∂kAl + ∂kZl∂iAj)(∂
iAj − ∂jAi)

)

This expression is gauge invariant under the usual Lie algebra valued gauge transforma-
tion. It contributes to the branching ratio of the Z0 decay.

We still have to learn how the gauge potential couples to the matter fields. This will
be done via covariant derivatives.

Di � ψ = (∂i − iVi) � ψ, (56)

δα0Di � ψ = iΛα0 �Di � ψ.
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9 Derivatives

First we have to define derivatives. In general, the star product will depend on the
coordinates, when we differentiate it the coordinate dependence of the � product will
contribute as well. Nevertheless, we demand a Leibniz rule of the type

∂µ � (f � g) = (∂µf) � g + Oν
µ(f) � ∂νg. (57)

From the associativity of the � product follows that Oν
µ(f) has to be an algebra homo-

morphism.
It is easier to define derivatives for Âx̂. A general procedure was outlined in ref.

[12]. We first extend the algebra by algebraic elements ∂̂ and consider the algebra

C

[
[x̂1, . . . , x̂n, . . . , ∂̂1, . . . , ∂̂n]

]
. This algebra has to be divided by the ideal Ix̂,x̂ as be-

fore. Then we have to construct a derivative, based on a Leibniz rule that is a map in

C

[
[x̂1, . . . , x̂n, . . . , ∂̂1, . . . , ∂̂n]

]
/Ix̂,x̂. This leads to consistency relations for the Leibniz

rule The Leibniz rule can now be interpreted as a relation and the respective ideals can
be constructed and factored out. Finally this has to be supplemented by ∂̂, ∂̂ relations.
We treat these relations as usual and after dividing by the respective ideal we arrive at
an algebra that we call Âx̂,∂̂.

In more detail the generalized Leibniz rule is supposed to have the form:

∂̂i(f̂ ĝ) = (∂̂if̂)ĝ +Ol
i(f̂)∂̂lĝ. (58)

From the law of associativity in Âx̂ follows that the map 0 has to be an algebra homo-
morphism

Oi
j(f̂ ĝ) = Oi

l(f̂)Ol
j(ĝ). (59)

If we define the Leibniz rule on the linear coordinates we can generalize it to all elements.
In the �Ax version of the algebra the Leibniz rule takes the form of equation (34). This

rule can be found as follows: ∂̂ introduces a map on the basis of Âx̂, this map defines a
map in �Ax. This map has finally to be expressed with ordinary x-derivatives. This then
leads to (34).

For constant θµν where the � product does not depend on x the ∂� derivatives are just
the ordinary x-derivatives.

Covariant derivatives are then defined as usual:

Di � ψ = (∂i − iVi) � ψ, (60)

δα0Di � ψ = iΛα0 �Di � ψ.

The vector potential has to be enveloping algebra valued. Again, it can be expressed in
terms of aµ by a Seiberg–Witten map. Therefore we expect that Aµ and Vµ are related.

For constant θµν we find:

Ai(x) = θijVj (61)

Covariant derivatives exist for θµν = 0. From (34) follows that Aµ vanishes in this case,
coordinates are already covariant.
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10 Gauge couplings to matter fields

The matter field ψ that transforms like

δα0ψ(x) = iΛα0(x)(x) � ψ(x) (62)

can be expressed in terms of a field ψ0 that transforms with a Lie algebra valued parameter
and the Lie algebra valued vector potential a. The transformation property (35) will be
a consequence of (7) and (13).

For constant θ we find:

ψ = ψ0 − 1

2
θµνalµT

l∂νψ
0 + . . . (63)

This now leads to the Lagrangian

∫
ψ̄ � (γµDµ �−m)ψd4x =

∫
ψ̄0 (γµDµ −m)ψ0d4 x− 1

4
θµλ

∫
ψ̄0F 0

µλ (γµDµ −m)ψ0

− 1

4
θσλ

∫
ψ̄0γµF 0

µσDλψ
0d4x+ · · · (64)

The fields ψ0 and F µν0 transform like the usual gauge fields with a Lie algebra valued
parameter. F µν0 is just the usual field strength of a gauge theory. Accordingly, Dµψ

0 is
the usual covariant derivative with the field aµ as a gauge potential.

11 Conclusion

Such a theory based on noncommutative coordinates should only be relevant for a region
with very high energy density, thus for very short distances, i.e. well inside the confinement
range. For larger distances we know that physics is described very well with commuting
coordinates. θµν(x) will be a complicated function, we treat this function in a power series
expansion and start with constant θµν . This has a chance to be relevant for processes that
take place at very short distances where the constant θµν might be dominant. The higher
order contribution on the expansion become relevant at distances where the process has
already occured. Such a process will not be sensitive to the functional behaviour of θµν(x)
and the constant θµν approximation might be a good approximation [14, 13]. To find such
a process demands physical intuition.
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