
Non-Forward Balitsky-Kovchegov Equation and Vector

Mesons

Robi Peschanski1, Cyrille Marquet2 and Gregory Soyez3
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Considering the Balitsky-Kovchegov QCD evolution equation in full momentum space,
we derive the travelling wave solutions expressing the nonlinear saturation constraints
on the dipole scattering amplitude at non-zero momentum transfer. A phenomenologi-
cal application to elastic vector meson production shows the compatibility of data with
the QCD prediction: an enhanced saturation scale at intermediate momentum transfer.

1 Motivation

The saturation of parton densities at high energy has been mainly studied for the forward
dipole-target scattering amplitude T (r, q = 0, Y ), where r, q, Y are, respectively, the dipole
size, the momentum transfer and the total rapidity of the process. For instance, the corre-
sponding QCD Balitsky-Kovchegov (BK) equation [2] has been shown to provide a theoret-
ical insight on the “geometric scaling” properties [3] of the related γ∗-proton cross-sections.
Indeed, it can be related to the existence of a scaling for T (r, q = 0, Y ) ∼ T (r2Q2(Y ))
where the saturation scale is Q2(Y ) ∼ exp cY and the constant c can be interpreted as the
critical speed of “travelling wave” solutions of the nonlinear BK equation [4]. Our theoreti-
cal and phenomenological subjects are the extension of these properties to the non-forward
amplitude T (r, q 6= 0, Y ), which is phenomenologically relevant for the elastic production of
vector mesons in deep inelastic scattering.

2 BK equation in full momentum space
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Figure 1: q2−dependent saturation scale

In order to study the properties of T (r, q 6=
0, Y ), one has first to deal with both concep-
tual and technical difficulties. It is known
that the BK formalism has been originally
derived in impact parameter b but then its
validity especially at large b is questionable,
since it leads to non physical power-law
tails. Hence we start with the formulation
of the BK equation in momentum q, which
is more local but has a non-trivial nonlin-
ear form [5]. In fact, despite this problem,
the general method of travelling wave solu-
tions can be extended in the non-forward
domain [6]. It consists in 3 steps: first, one
solves the equation restricted to its linear
part which is related to the non-forward Balitsky Fadin Kuraev Lipatov (BFKL) equation
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[7] for the dipole-dipole amplitude via factorisation and whose solution takes the form of
a linear superposition of waves. Second, one finds that the nonlinearities act by selecting
the travelling wave with critical speed c, in a way which, interestingly, is independent of the
specific structure of the nonlinear damping terms. Third, one obtains after enough rapidity
evolution, a solution which appears independent from initial conditions (T0 ∼ r2γ0) , pro-
vided these are sharper than the critical travelling wave front profile T ∼ r2γc , with γ0 > γc.
Interestingly enough, QCD color transparency satisfies this criterium. Applying these gen-
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Figure 2: ρ (H1) and φ (ZEUS) differential cross-sections at W = 75 GeV

eral results on the non-forward case one finds the following QCD predictions, depending on
the relative magnitude of three scales involved in the process, namely q, k−1

T (the target
size) and k−1

P ≡ r (the projectile i.e. dipole size).

• Near-Forward region q � kT � kP : Q2
s(Y ) ∼ k2

T exp cY

• Intermediate transfer region kT � q � kP : Q2
s(Y ) ∼ q2 exp cY

• High transfer region q � kT � kP : No saturation.

Our main prediction is thus the validity of the forward travelling wave solution extended
in the non-forward intermediate-transfer domain but with an enhanced saturation scale by
the ratio q2/k2

T , where kT is a typically small, nonperturbative scale. Hence we are led to
predict geometric scaling properties with a purely perturbative initial saturation scale given
by the transverse momentum. This saturation scale enhancement prediction is confirmed by
numerical simulations of the BK solutions as shown in Fig.1.

3 QCD Saturation Model for Exclusive VM production

The differential cross-section for exclusive vector meson (VM) production at HERA, see
Fig.2, can be theoretically obtained from the non-forward dipole-proton amplitude and from

Φγ
∗V
T,L , the overlap functions between the (longitudinal and transverse) virtual photon and

vector meson wave-functions [8]. For completion, we used two different VM wave-functions
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of the literature, without noticeable difference in our conclusions. One writes

dσγ
∗p→V p
T,L

dq2
=

1

16π

∣∣∣∣
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0
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T,L (z, r;Q2,M2

V ) e−izq·r T (r, q, Y )

∣∣∣∣
2

,

Following theoretical prescriptions, we consider a forward dipole-proton amplitude NIIM
satisfactorily describing the total DIS cross-sections in a saturation model [9]. We just make
the saturation scale varying with q2, following the trend shown in Fig.1 and starting from
the forward model one Q2

s(Y ), one writes

T (r, q;Y ) = 2πR2
p e
−Bq2NIIM (r2 Q2

s(Y, q)) ; Q2
s(q, Y ) = Q2

s(Y ) (1 + c q2) .

Cross-sections q2-Sat. fixed-Sat.
ρ, σel 1.156 1.732

ρ, dσ
dt 1.382 1.489

φ, σel 1.322 2.247

φ, dσ
dt 1.076 0.931

Total 1.212 1.480

Table 1: Comparison of the χ2/points

The factor 2πR2
p e
−Bq2

comes from the non-
perturbative proton form factor. For clar-
ity of the analysis, we considered only B
and c as free parameters of the non-forward
parametrisations, the others being indepen-
dently fixed by the forward analysis.

In Table 1, one displays the χ2/point ob-
tained by a fit of ρ (47 data points) and φ
(34 points) total elastic production cross-
sections and of ρ (50 data points) and φ (70
points) differential cross-sections. The Ta-

ble compares the saturation fits for fixed and q2-dependent scales, with a favour for the
enhanced-scale model in the total. The model gives a comparable fit with a more conven-
tional non-saturation model using a Q2-dependent slope B ∝M2

V +Q2. Some of our results
for the cross-sections are displayed in the figures. In Fig.2, one shows the results of the fit
for ρ-production (H1) and φ-production (ZEUS) differential cross-sections for a total γ∗− p
energy W = 75GeV and different Q2 values. Let us finally present our predictions for the
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Figure 3: Predictions for the DVCS measurements. Left plot: cross-section, right plot:
differential cross-section.

DVCS cross-section, which is obtained without any free parameter from our analysis. In
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Fig.3, they are compared with the available data and the agreement is good in the simple
chosen parametrisation.

4 Conclusions

Let us summarize our new results
• Saturation at non-zero transfer: The Balitsky-Kovchegov QCD evolution equation

involving full momentum transfer predicts (besides the known q = 0 case) saturation in the
intermediate transfer range, namely for Q0 < q < Q, where Q0 (resp. Q) is the target (resp.
projectile) typical scale.
• Characterisation of the universality class: The universality class of the corresponding

travelling-wave solutions is governed by a purely perturbative saturation scale Qs(Y ) ≡
q2Ω(Y ), where Ω(Y ) ∼ ecY is the same rapidity evolution factor as in the forward case.
Consequently the intermediate transfer saturation scale gets enhanced by a factor q2/Q2

0.
• Phenomenology of Vector mesons: The QCD predictions are applied in the exper-

imentally accessible intermediate transfer range of vector meson production. The model
uses an interpolation between the forward and non-forward saturation scale together with a
parameter-frozen forward saturation model. It fits better the data on ρ (H1) and φ (ZEUS)
cross-sections than for a non-enhanced saturation.
• Prospects: The next phenomenological prospect is to add charm to the discussion,

both with the modification of the forward case by including the charm contribution [10]
and by also considering the production of Ψ mesons. On a theoretical ground, it would be
interesting to go beyond the mean-field approximation of the BK equation.
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