
BFKL NLL Phenomenology of Forward Jets at HERA

and Mueller Navelet Jets at the Tevatron and the LHC

Christophe Royon

DAPNIA/Service de physique des particules,
CEA/Saclay, 91191 Gif-sur-Yvette cedex, France

We perform a BFKL-NLL analysis of forward jet production at HERA which leads
to a good description of data over the full kinematical domain. We also predict the
azimuthal angle dependence of Mueller-Navelet jet production at the Tevatron and the
LHC using the BFKL NLL formalism.

1 Forward jets at HERA
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Figure 1: Comparison between the H1 dσ/dx
measurement with predictions for BFKL-LL,
BFKL-NLL (S4) and DGLAP NLO calcula-
tions (see text). S4 and LL BFKL cannot be
distinguished on that figure.

Following the successful BFKL [2] parametri-
sation of the forward-jet cross-section
dσ/dx at Leading Order (LO) at HERA
[3, 4], it is possible to perform a simi-
lar study using Next-to-leading (NLL) re-
summed BFKL kernels. This method can
be used for forward jet production at HERA
in particular, provided one takes into ac-
count the proper symmetric two-scale fea-
ture of the forward-jet problem, whose
scales are in this case Q2, for the lepton ver-
tex and k2

T , for the jet vertex. In this short
report, we will only discuss the phenomel-
ogical aspects and all detailed calculations
can be found in Ref. [5] for forward jets at
HERA and in Ref. [6] for Mueller Navelet
jets at the Tevatron and the LHC.

1.1 BFKL NLL formalism

We perform a saddle point approximation
of the BFKL NLL formalism and compare
it with the H1 forward jet cross section mea-
surements a. The BFKL NLL [7] formalism
reads:

dσ
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= N

(
Q2

k2
T

)γ
αS(k2

T )αS(Q2)
√
A exp

(
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exp

(
−AαS(kTQ) log2(

√
Q

kT
)

)

aWe are in the process of checking that implementing the full BFKL NLL kernel instead of performing a
saddle point approximation does not change the results of this paper and the quality of the fits.
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d σ/dx dkT
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Figure 2: Comparison between the H1 measurement of the triple differential cross section
with predictions for BFKL-LL, BFKL-NLL (S4) and DGLAP NLO calculations (see text).

with

A−1 =
3αS(kTQ)

4π
log

xJ
x
χ′′eff (γC)

γ = γC +
αS(kTQ)χeff (γC)

2

where the saddle point equation is χ′eff (γc) = 0. The effective kernels χeff (p, γ, ᾱ) are
obtained from the NLL kernel by solving the implicit equation:

χeff = χNLL(p, γ, ᾱχeff ).

The values of χ are taken at NLL [7] using different resummation schemes to remove spurious
singularities defined as CCS, S3 and S4 [8]. Contrary to LL BFKL, it is worth noticing that
the coupling constant αS is taken using the renormalisation group equations, the only free
parameter in the fit being the normalisation.

One difficulty arises while fitting H1 dσ/dx data [9] : we need to integrate the differential
cross section on the bin size in Q2, xJ (the momentum fraction of the proton carried by the
forward jet), kT (the jet transverse momentum), while taking into account the experimental
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cuts. To avoid numerical difficulties, we choose to perform the integration on the bin using
the variables where the cross section does not change rapidly, namely k2

T /Q
2, log 1/xJ ,

and 1/Q2. Experimental cuts are treated directly at the integral level (the cut on 0.5 <
k2
T /Q

2 < 5 for instance) or using a toy Monte Carlo. More detail can be found about the
fitting procedure in Appendix A of Ref. [4].

The NLL fits [5] can nicely describe the H1 data [9] for the S4 scheme (χ2 = 5.6/5 per
degree of freedom with statistical errors only) whereas the S3 and CCS schemes show higher
χ2. (χ2 = 45.9/5 and χ2 = 20.4/5 respectively with statistical errors only) The fit χ2 are
good for all schemes if one considers statistical and systematics errors added in quadrature
[3, 4]. The DGLAP NLO calculation fails to describe the H1 data at lowest x (see Fig. 1).

The H1 collaboration also measured the forward jet triple differential cross section [9]
and the results are given in Fig. 2. The BFKL LL formalism leads to a good description
of the data when r = k2

T /Q
2 is close to 1 and deviates from the data when r is further

away from 1. This effect is expected since DGLAP radiation effects are supposed to occur
when the ratio between the jet kT and the virtual photon Q2 are further away from 1. The
BFKL NLL calculation including the Q2 evolution via the renormalisation group equation
leads to a good description of the H1 data on the full range. We note that the higher order
corrections are small when r ∼ 1, when the BFKL effects are supposed to dominate. By
contrast, they are significant as expected when r is different from one, ie when DGLAP
evolution becomes relevant. We notice that the DGLAP NLO calculation fails to describe
the data when r ∼ 1, or in the region where BFKL resummation effects are expected to
appear.

2 Mueller Navelet jets at the Tevatron and the LHC

Mueller Navelet jets are ideal processes to study BFKL resummation effects [10]. Two
jets with a large interval in rapidity and with similar tranverse momenta are considered. A
typical observable to look for BFKL effects is the measurement of the azimuthal correlations
between both jets. The DGLAP prediction is that this distribution should peak towards π
- ie jets are back-to-bacl- whereas multi-gluon emission via the BFKL mechanism leads to
a smoother distribution. The relevant variables to look for azimuthal correlations are the
following:

∆η = y1 − y2

y = (y1 + y2)/2

Q =
√
k1k2

R = k2/k1

The azimuthal correlation for BFKL reads:

2π
dσ

d∆ηdRd∆Φ

/
dσ

d∆ηdR
= 1 +

2

σ0(∆η,R)

∞∑

p=1

σp(∆η,R) cos(p∆Φ)
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where in the NLL BFKL framework,

σp =

∫ ∞

ET

dQ

Q3
αs(Q

2/R)αs(Q
2R)

(∫ y>

y<

dyx1feff (x1, Q
2/R)x2feff (x2, Q

2R)

)

∫ 1/2+∞

1/2−∞

dγ

2iπ
R−2γ eᾱ(Q2)χeff (p,γ,ᾱ)∆η

and χeff is the effective resummed kernel. Computing the different σp at NLL for the
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Figure 3: Azimuthal correlations between jets
with ∆η =6, 8, 10 and 11 and pT > 5 GeV in
the CDF acceptance. This measurement will
represent a clear test of the BFKL regime.

resummation schemes S3 and S4 allowed us
to compute the azimuthal correlations at
NLL. As expected, the ∆Φ dependence is
less flat than for BFKL LL and is closer
to the DGLAP behaviour [6]. To illustrate
this result, we give in Fig. 3 the azimuthal
correlation in the CDF acceptance. The
CDF collaboration installed the mini-Plugs
calorimeters aiming for rapidity gap selec-
tions in the very forward regions and these
detectors can be used to tag very forward
jets. A measurement of jet pT with these
detectors would not be possible but their
azimuthal segmentation allows a φ measure-
ment. In Fig. 3, we display the jet az-
imuthal correlations for jets with a pT > 5
GeV and ∆η =6, 8, 10 and 11. For ∆η =11,
we notice that the distribution is quite flat,
which would be a clear test of the BFKL
prediction. Similar measurements are possi-
ble at the LHC and predictions can be found
in Ref. [6].
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