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We give a status report on the determination of a set of parton distributions based on
neural networks. In particular, we summarize the determination of the nonsinglet quark
distribution up to NNLO, we compare it with results obtained using other approaches,
and we discuss its use for a determination of αs.

1 Introduction

The LHC will require an approach to the search for new physics based on the precision
techniques which are customary at lepton machines [2, 3]. This has recently led to significant
progress in the determination of parton distribution functions (PDFs) of the nucleon. The
main recent development has been the availability of sets of PDFs with an estimate of the
associated uncertainty [4, 5, 6]. However, the standard approach to the determination of
the uncertainty on parton distributions has several weaknesses, such as the lack of control
on the bias due choice of a parametrization and, more in general, the difficulty in giving a
consistent statistical interpretation to the quoted uncertainties.

These problems have stimulated various new approaches to the determination of PDFs [8],
in particular the neural network approach, first proposed in Ref. [7]. The basic idea is to
combine a Monte Carlo sampling of the probability measure on the space of functions that
one is trying to determine [8] with the use of neural networks as universal unbiased interpo-
lating functions. In Refs. [7, 9] this strategy was successfully applied to a somewhat simpler
problem, namely, the construction of a parametrization of existing data on the DIS struc-
ture function F2(x,Q2) of the proton and neutron. The method was proven to be fast and
robust, to be amenable to detailed statistical studies, and to be in many respects superior
to conventional parametrizations of structure functions based on a fixed functional form.

The determination of a parton set involves the significant complication of having to go
from one or more physical observables to a set of parton distributions. Recently [10] most
of the technical complications required for the construction of a neural parton set have been
tackled and solved in the process of constructing a determination of the quark isotriplet
parton distribution. This work will be reviewed here. Also, based on this work, we will
present preliminary results on the determination of αs and a determination of the variation
in χ2 which corresponds to a one-sigma variation of the underlying parton distributions.
Work to apply the techniques of [10] to the singlet sector is at an advanced stage [11].
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2 Determination of the nonsinglet quark distribution

The first application of the neural network approach to parton distributions, a determination
of the NS parton distribution qNS(x,Q2

0) = (u + ū − d + d̄)(x,Q2
0) from the DIS structure

function data of the NMC and BCDMS collaborations, was presented in Ref. [10]. Results
for this PDF were obtained at LO, NLO, NNLO for different values of αs(M

2
Z).

In Ref. [10] we have implemented a new fast and efficient method for solving the evolution
equations up to NNLO. This method combines the advantages of x−space and N−space
evolution codes: an x dependent Green function (evolution factor) is determined by inverse
Mellin transformation of the exact N -space expression and stored. Evolution of PDFs is
then performed by convoluting this Green function with any given boundary condition. The
accuracy of this method has been benchmarked up to NNLO with the help of the tables of
Refs. [2, 3].

Also, we have implemented a criterion to determine the convergence of the fitting proce-
dure in a way which is free of bias related to the choice of parametrization. To this purpose,
the dataset is randomly divided into two sets, of which only one is used in the fit. Con-
vergence is achieved when the quality of the fit to data which are not used for minimiztion
stops improving.

An important feature of our approach is that it is possible to check quantitatively the
statistical features of results using suitable estimators. For example, one can check that the
results do not depend on choices made during the fitting procedure, such as the choice of
architecture of neural networks, which is analogous to the choice of parton parametrization
in conventional fits. Namely, we repeat the fit with a different choice, and compute the
distance

d[q] =

√√√√√
〈 (

q
(1)
i − q

(2)
i

)2

(σ
(1)
i )2 + (σ

(2)
i )2

〉

dat

, (1)

where q
(1)
i , q

(2)
i are the predictions for the i-th data point in the two fits, and σ

(1)
i , σ

(2)
i

the predictions for the corresponding statistical uncertainties, and the average is performed
over all data. The results of the first and second fit are the same if d[q] = 1 on average.
This also checks that the statistical uncertainties are correctly estimated. One can similarly
check stability of the uncertainty estimate. In Ref. [10] this comparison has been performed
succesfully.

In Fig. 1 we compare our results for the NS structure function FNS
2 to other published

determinations. These results are available through the webpage of the NNPDF Collabo-
ration: http://sophia.ecm.ub.es/nnpdf. The large uncertainty that we find is a genuine
feature of the determination of the nonsinglet quark distribution from the data included
in our fit, and, especially at small x, it appears to reflect the current knowledge of the
nonsinglet quark distribution. Indeed, for x ≤ 0.05 the only data which constrain the qNS

combination in global fits are the data used in the determination of Ref. [10]. Hence, our
results suggest that standard fits might be underestimating PDF uncertainties.

In recent work on PDF uncertainties [5, 6] it has been suggested that, mostly because of
inconsistencies between data, the variation of the total χ2 which corresponds to a one–sigma
variation of the underlying PDFs is of order of ∆χ2 ∼ 50 for the global fits presented in
those references instead of ∆χ2 = 1 of a statistically consistent fit [4]. In our approach, this
quantity can be computed. We get ∆χ2 ≈ 1.7 (preliminary). This implies that the NMC
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Figure 1:
The nonsinglet structure function FNS

2 as determined by the NNPDF collaboration [10]
from 229 NMC and 254 BCDMS data points, compared to data and various other

determinations.

and BCDMS data are mostly consistent, though some inconsistent data are present [7, 9].
An extensive discussion of the way the published [10] and forthcoming [11] fits based on the
neural network approach can be used for the determination of physical parameters (such as
αs) and statistical properties of the data (such as ∆χ2) will be presented in a forthcoming
publication.

In [10] the strong coupling αs(M
2
Z) was fixed, but we could also extract it from the fit.

The results of a preliminary analysis, shown in Fig. 2, suggest that nonsinglet data determine
αs(M

2
Z) with an uncertainty which is rather larger than that (∆αs(M

2
Z) ∼ 0.002) obtained

in comparable determinations (see e.g. Ref. [12]). This preliminary result is consistent with
that obtained using the same data in Ref. [13], with a method which eliminates the need
to choose a parton parametrization. This strengthens the conclusion that uncertainties in
available PDF fits might be underestimated.

3 Towards a full parton set

The extension of the results described in Ref. [10] to a full global PDF fit has benefited from
the increased manpower of the NNPDF Collaboration, and is at a rather advanced stage [11].
In particular, the evolution formalism of Ref. [10] has been extended to the computation of
a full set of neutral-current and charged-current structure functions and fully benchmarked.
A first full neural parton fit is in is in preparation. It will at first be based on DIS data only,
including all available F p2 and F d2 fixed target data and the full NC and CC HERA reduced
cross sections.
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Figure 2:
The χ2 profile for a preliminary NNLO determination of αs(M

2
Z) from NS data. The

number of data points included in the fit is Ndat = 483.
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