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We describe the twist-2 contributions to inclusive unpolarized and polarized deep-
inelastic diffractive scattering in an operator approach. The representation refers to
the observed large rapidity gap but does not require reference to a pomeron picture.
We discuss both the case of vanishing target mass M and momentum transfer t as well
as the effects at finite t and M , which lead to modifications at large β and low values
of Q2.

1 Introduction

Deep-inelastic diffractive scattering is one of the important scattering processes in high-
energy ep scattering at HERA. In the small-x domain ∼ 1/8 of the events are due to this
process. It is characterized by inclusive hadron-production with a large rapidity gap between
the outgoing proton and all the remainder hadrons. In Refs. [1] two of the present authors
developed a description for this process based on the Compton operator and using techniques
known in non-forward scattering, cf. [2], for the case that the momentum transfer t between
the incoming and the outgoing proton and target masses can be neglected. In the region of
smaller values of Q2 and large values of β = x/xP one expects both finite t and M2 effects
which were worked out in [3] based on related investigations for the non-forward case [4],
see also [5]. In this paper we summarize the main findings of these analyzes, cf. also [6].

2 General Structure

The hadronic tensor of the process is determined by three vectors p1, p2, q, the incoming
and outgoing proton momentum and the momentum transfer in the unpolarized case sup-
plemented by the spin vector of the initial proton S in the polarized case. The following
invariants are formed

Q2 = −q2, W := (p1 + q)2, x :=
Q2

Q+W 2 −M2
, t := (p2 − p1)2, xP := − 2η

2− η ≥ x.

The hadronic tensors in case of the unpolarized and polarized cases are of the following
form, [1]

W unp
µν =

(
−gµν +

qµqν
q2

)
W1 + p̂1µp̂1ν

W3

M2
+ p̂2µp̂2ν

W4

M2
+ (p̂1µp̂2ν + p̂2µp̂1ν)

W5

M2
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W pol
µν = i [p̂1µp̂2ν − p̂1ν p̂2µ] εp1,p2,q,S

Ŵ1

M6
+ i [p̂1µενSp1q − p̂1νεµSp1q ]

Ŵ2

M4

+ i [p̂2µενSp1q − p̂2νεµSp1q ]
Ŵ3

M4
+ i [p̂1µενSp2q − p̂1νεµSp2q ]

Ŵ4

M4

+ i [p̂2µενSp2q − p̂2νεµSp2q ]
Ŵ5

M4
+ i [p̂1µε̂νp1p2S − p̂1ν ε̂µp1p2S ]

Ŵ6

M4

+ i [p̂2µε̂νp1p2S − p̂2ν ε̂µp1p2S ]
Ŵ7

M4
+ iεµνqS

Ŵ8

M2
.

with p̂2µ, ε̂νp1p2S , etc. the corresponding gauge-invariant completions. In general there are
4 unpolarized and 8 polarized structure functions in case of pure photon exchange.

The twist–2 contributions can be described applying the factorization theorem. More-
over, A. Mueller’s generalized optical theorem allows to turn the isolated final state proton
into an initial state anti-proton, being separated from the proton by t. In this way the
diffractive state is formed, from which the hadronic tensor is obtained taking the forward
expectation value of the Compton-tensor. Evaluating the process further using the above
kinematic variables we are led to a description of the diffractive scattering cross section which
does not require any reference to a pomeron picture, but is solely based on the presence of
a large rapidity gap.

3 The Case t = M2 = O

In this approximation the number of structure functions reduces to two unpolarized and two
polarized ones, because of the collinearity of p1 and p2, [1]. Due to this the diffractive state
simplifies and leads to a Lorentz structure with lower complexity. For pure photon exchange
only the structure functions F1,2 resp. g1,2 contribute, which in the twist-2 approximation
obey a modified Callan–Gross relation

F2(β, η,Q2) = 2xF1(β, η,Q2)

and the Wandzura-Wilczek, respectively. As shown in [1], the evolution equations, changing
x→ β are the same as for inclusive deep–inelastic scattering. To derive the diffractive evo-
lution equations one considers the evolution equations for non–forward scattering Ref. [2b]

µ2 d

dµ2
OA(κ+x̃, κ−x̃;µ2) =

∫
Dκ′γAB(κ+, κ−, κ

′
+, κ

′
−;µ2)OB(κ′+x̃, κ

′
−x̃;µ2)

which turn into

µ2 d

dµ2
fA(ϑ, η;µ2) =

∫ −sign(ϑ)/η

ϑ

dϑ′

ϑ′
PAB

(
ϑ

ϑ′
, µ2

)
fB(ϑ′, η;µ2)

in the case t,M2 → 0. The value of ϑ is determined by the absorptive condition as ϑ = 2β.
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4 Target Mass Corrections

At low values of Q2 and large values of β both target mass and finite t–effects become
important. As shown in Ref. [3], following [4], these effects have to be dealt with together.
The method is a generalization of the treatment of target mass effects in [7] to the non–
forward case. The now more complicated diffractive states 〈p1,−p2, t| imply that the pre-
parton densities emerging in this case depend on two light–cone variables z±, non of which
can be integrated out. For further treatment we define the variables

ϑ = z− +
z+

η
, ζ =

z−
ϑ
.

The presence of the variable ζ implies that the full Lorentz structure outlined above con-
tributes, assuming azimuthal angular integrals are not carried out. Four unpolarized and
eight polarized structure functions contribute. The partonic description being possible in
the case t,M2 → 0 at the level of observables does not hold anymore in this case, since p1

and p2 are no longer collinear. Instead, one has to perform definite integrals (the ζ-integrals
in [3]) over pre-partonic two-particle correlation functions, which cannot be determined by
experiment directly. The absorptive condition in the present case is given by

ϑ = −2β

κ

1

1 +
√

1 + 4β2P2(η, ζ, t)/Q2
.

Here |P(η, ζ)| takes the role of the nucleon mass in the case of forward scattering. It holds
P2 = t(1 − ζ/η) + (4M2 − t)ζ2 ≥ 0. As an example, we present the M 2 and t corrections
for the un-integrated unpolarized structure functions F a1,2 [3] :

F a1 (ϑ, ζ) ≡ Φ(0)
a (ϑ, ζ) +

κP2

[(qP)2 − q2P2]1/2
Φ(1)
a (ϑ, ζ) +

κ2[P2]2

(qP)2 − q2P2
Φ(2)
a (ϑ, ζ)

F a2 (ϑ, ζ) ≡ Φ(0)
a (ϑ, ζ) +

3κP2

[(qP)2 − q2P2]1/2
Φ(1)
a (ϑ, ζ) +

3κ2[P2]2

(qP)2 − q2P2
Φ(2)
a (ϑ, ζ)

Here the ζ−dependent distribution functions Φ
(k)
a (ϑ, ζ) are iterated integrals of the corre-

lation function Φ
(0)
a (ϑ, ζ) = fa(ϑ, ζ), cf. [3]. a denotes the respective kinematic invariant,

implying kinematic dependences in general.
Although no partonic description is obtained one still may study, whether twist–2 re-

lations between structure functions exist. In case of the Callan–Gross relation this is not
expected, since it is absent also for forward scattering [7]. However, the Wandzura–Wilczek
relation between the twist–2 contributions of the polarized structure functions g1 and g2

holds also in the diffractive case for finite values M 2, t, as in many other cases [8–10]. Here
the ζ−integral can be carried out.a This is not the case for other structure functions. Below
this integral, however, all the different structure functions can be represented by a single
ζ−dependent two–particle distribution function in the unpolarized and polarized case, re-
spectively. The different ζ−dependence of the respective pre-factors and the fact that the
ζ−integral is definite prevents to access the corresponding pre–parton distribution functions.

aIt would be interesting to see, whether the generalization of integral relations derived for the forward
polarized case for the twist–2 and twist–3 contributions [8,9] can be generalized to diffractive scattering for
electro-weak boson exchange.
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At the twist–2 level diffractive parton distributions exist whenever the M 2, t → 0 ap-
proximation holds. For large values of β and small values of Q2 this is not the case. This is
also the kinematic region in which one expects higher twist operators to contribute in the
light cone expansion.b

The twist–2 scaling violations of the diffractive structure functions in case of M 2, t being
finite are different from those in the limit M 2, t→ 0. Unlike the case there, the non–forward
evolution equations do not simplify in the same way and the ζ−dependence will remain here
too.

5 Conclusions

Deep-inelastic diffractive scattering can be described taking the expectation value of the
Compton Operator between the diffractive states 〈p1, p2; t| obtained by applying A. Mueller’s
generalized optical theorem. In the limit M 2, t → 0, two polarized and two unpolarized
structure functions contribute to the scattering cross section at twist τ = 2. They are
related by a modified Callan-Gross relation (in lowest order), resp. the Wandzura-Wilzcek
relation in all orders. Target mass corrections accounting for all M 2, t-effects are required in
the region of large values of β and low values of Q2. The set of genuine diffractive structure
functions becomes larger due to these effects: four unpolarized structure functions and eight
polarized structure functions (with one relation) contribute. These structure functions can
be decomposed into generally different diffractive parton densities due to the ζ–integral. In
the case of M2, t→ 0 the scaling violations of the twist τ = 2 contribution to the diffractive
structure functions are described by the evolution equations for forward scattering replacing
x→ β. The present approach results into a thorough description demanding a rapidity gap
without any need to invoke a “pomeron”.
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