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The O(α2
s) massive operator matrix elements for unpolarized and polarized heavy flavor

production at asymptotic values Q2 >> m2 are calculated in Mellin space without
applying the integration-by-parts method. We confirm previous results given in Refs. [5,
6], however, obtain much more compact representations.

1 Introduction

The heavy-flavor corrections to deeply inelastic structure functions are very important for
the range of small values of x and do contribute there on the level of 20–40%. They have to
be known at the same level of accuracy as the light-flavor contributions for precision mea-
surements of ΛQCD [2] and the parton distributions. The next-to-leading order corrections
were given semi-analytically in [3] for the general kinematic range. Fast and accurate imple-
mentations of these corrections in Mellin-space were given in [4]. In the region Q2 >> m2,
the heavy flavor Wilson coefficients were derived analytically to O(α2

s) [5, 6]. Here Q2 de-
notes the virtuality of the gauge boson exchanged in deeply–inelastic scattering and m is the
mass of the heavy quark. In this note we summarize the results of a first re-calculation of
the operator matrix elements (OMEs) in [7,8]. The calculation is being performed in Mellin-
space using harmonic sums [9, 10] without applying the integration-by-parts technique. In
this way, we can significantly compactify both, the intermediary and final results. We agree
with the results in [5, 6]. The unpolarized and polarized O(α2

s) massive OMEs can be used
to calculate the asymptotic heavy-flavor Wilson coefficients for F2(x,Q2) and g1(x,Q2) to
O(α2

s) [5–8], and for FL(x,Q2) to O(α3
s) [11].

2 The Method

In the limit Q2 >> m2 the heavy quark contributions to the twist-2 Wilson coefficients are
determined by universal massive operator matrix elements 〈i|Al|j〉 between partonic states.
The process dependence is due to the corresponding massless Wilson coefficients [12]. This
separation is obtained by applying the renormalization group equation(s) to the (differential)
scattering cross sections, cf. [5]. In this way all logarithmic and the constant contribution
in m2/Q2 can be determined. The operator matrix elements are calculated applying the
operator insertions due to the light-cone expansion in the respective amplitudes. One obtains
the following representation
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with ⊗ denoting the Mellin convolution. The OMEs contain ultraviolet and collinear di-
vergences. The collinear singularities are absorbed into the parton distribution functions
while the ultraviolet divergences are removed through renormalization. To 2–loop order, the
renormalized OMEs read :
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and similar for the quarkonic contributions. Here, µ2 denotes the factorization and renormal-

ization scale, P
(k−1)
ij are the kth loop splitting functions and β0 denotes the lowest expansion

coefficient of the β–function. a
(k)
ij and ā

(k)
ij are the O(ε0) resp. O(ε)-terms in the expansion

of the OME, which form the main objective of the present calculation.

3 Results

We calculated the massive operator matrix elements both, for the gluon–heavy quark and
light–heavy quark transitions in the flavor non-singlet and singlet cases, for unpolarized and
polarized nucleon targets.

The constant contribution to the unpolarized and polarized OMEs for the transition
g → Q are :
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Here Pi(N) denote polynomials given in [7, 8]. The corresponding quarkonic expressions
are given in [7, 8]. The integrals were performed using Mellin-Barnes techniques [13, 14]
and applying generalized hypergeometric function representations. The results were further
simplified using algebraic relations between harmonic sums [15]. Furthermore, structural
relations for harmonic sums [16], which include half–integer relations and differentiation for
the Mellin variable N , lead to the observation that the OMEs above depend only on two
basic harmonic sums :

S1(N), S−2,1(N) .

We expressed S−2,1(N) in terms of the Mellin transform M [ Li 2(x)/(1+x)](N) in the above.
Here β(N) = (1/2) · [ψ((N + 1)/2) − ψ(N/2)]. Previous analyzes of various other space-
and time-like 2–loop Wilson coefficients and anomalous dimensions including also the soft
and virtual corrections to Bhabha-scattering [15a,16], showed that six basic functions are
needed in general to express these quantities :

S1(N), S±2,1(N), S−3,1(N), S±2,1,1(N) .

Non of the harmonic sums occurring contains an index {−1} as observed in all other cases
being analyzed.

Comparing to the results obtained in Refs. [5, 6] in x–space, there 48 functions were
needed to express the final result in the unpolarized case and 24 functions in the polarized
case.

To obtain expressions for the heavy flavor contributions to the structure functions in
x–space, analytic continuations have to be performed to N ε C for the basic functions given
above, see [16, 18, 19]. Finally a (numeric) contour integral has to be performed around the
singularities present.

4 Conclusions

We calculated the unpolarized and polarized massive operator matrix elements to O(α2
s),

which are needed to express the heavy flavor Wilson coefficients contributing to the deep–
inelastic structure functions F2, g1 and FL to O(α2

s) resp. O(α3
s) in the region Q2 >> m2.

The calculation was performed in Mellin space without using the integration-by-parts tech-
nique, leading to nested harmonic sums. We both applied representations through Mellin–
Barnes integrals and generalized hypergeometric functions. In course of the calculations, a
series of new infinite sums over products of harmonic sums weighted by related functions
were evaluated, cf. [7, 8]. These representations were essential to keep the complexity of
the intermediary and final results as low as possible. Furthermore, we applied a series of
mathematic relations for the harmonic sums to compactify the results further. We confirm
the results obtained earlier in Refs. [5, 6] by other technologies.
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[8] J. Blümlein and S. Klein, DESY 07–027.
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