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Within constrained minimal-flavor-violation the large destructive flavor-changing Z-
penguin managed to survive eradication so far. We give a incisive description of how to
kill it using the precision measurements of the Z → bb̄ pseudo observables. The derived
stringent range for the non-standard contribution to the universal Inami-Lim function
C leads to tight two-sided limits for the branching ratios of all Z-penguin dominated
flavor-changing K- and B-decays.

1 Introduction

The effects of new heavy particles appearing in extensions of the standard model (SM) can be
accounted for at low energies in terms of effective operators. The unprecedented accuracy
reached by the electroweak (EW) precision measurements performed at the high-energy
colliders LEP and SLC impose stringent constraints on the coefficients of the operators
entering the EW sector. Other severe constraints came in recent years from the BaBar,
Belle, CDF, and DØ experiments and concern extra sources of flavor and CP violation that
represent a generic problem in many scenarios of new physics (NP). The most pessimistic but
experimentally well supported solution to the flavor puzzle is to assume that all flavor and
CP violation is governed by the known structure of the SM Yukawa interactions. In these
minimal-flavor-violating (MFV) [2, 3, 4] models correlations between certain flavor diagonal
high-energy and flavor off-diagonal low-energy observables exist since, by construction, NP
couples dominantly to the third generation. In order to simplify matters, we restrict ourselves
in the following to the class of constrained MFV (CMFV) [5] models, i.e., scenarios that
involve only SM operators, and thus consider just left-handed currents.

2 General considerations

That new interactions unique to the third generation can lead to an intimate relation between
the non-universal ZbLb̄L and the flavor non-diagonal ZdjLd̄

i
L vertices has been shown recently

in [6]. Whereas the former structure is probed by the ratio of the Z-boson decay width into
bottom quarks and the total hadronic width, R0

b , the bottom quark asymmetry parameter,
Ab, and the forward-backward asymmetry for bottom quarks, A0,b

FB, the latter ones appear
in many K- and B-decays.

In the effective field theory framework of MFV [4], one can easily see how the ZbLb̄L
and ZdjLd̄

i
L operators are linked together. The only relevant dimension-six contributions

compatible with the flavor group of MFV stem from the SU(2)× U(1) invariant operators

O1 = i
(
Q̄LYUY

†
UγµQL

)
φ†Dµφ ,

O2 = i
(
Q̄LYUY

†
Uτ

aγµQL

)
φ†τaDµφ ,

(1)

that are built out of the quark doublets QL, the Higgs field φ, the up-type Yukawa matrices
YU , and the SU(2) generators τa. After EW symmetry breaking, O1,2 are responsible for
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both the effective ZbLb̄L and ZdjLd̄
i
L vertex. Since all up-type quark Yukawa couplings except

the one of the top, yt, are small, one has (YUY
†
U )ji ∼ y2

t V
∗
tjVti and only this contribution

matters in Eq. (1).
Within the SM the Feynman diagrams responsible for the enhanced top correction to

the ZbLb̄L coupling also generate the ZdjLd̄
i
L operators. In fact, in the limit of infinite top

quark mass the corresponding amplitudes are up to Cabibbo-Kobayashi-Maskawa (CKM)
factors identical. Yet there is a important difference between them. While for the physical
Z → bb̄ decay the diagrams are evaluated on-shell, in the case of the low-energy Z → dj d̄i

transitions the amplitudes are Taylor-expanded up to zeroth order in the external momenta.
As far as the momentum of the Z-boson is concerned the two cases correspond to q2 = M2

Z

and q2 = 0.
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Figure 1: Relative deviations δn as a function
of M . The solid, dashed, and dotted curve
correspond to n = 1, 2, and 3, respectively.
See text for details.

The general features of the small mo-
mentum expansion of the one-loop Z → bb̄
vertex can be nicely illustrated with the fol-
lowing simple but educated example. Con-
sider the scalar integral

C0 =
m2

3

iπ2

∫
d4l

D1D2D3
, (2)

with Di = (l + pi)2 −m2
i and p3 = 0. Note

that we have set the space-time dimension
to four since the integral is finite and as-
sumed without loss of generality m3 6= 0.

In the limit of vanishing bottom quark
mass one has for the corresponding mo-
menta p2

1 = p2
2 = 0. The small momen-

tum expansion of the scalar integral C0 then
takes the form

C0 =
∞∑
n=0

an

(
q2

m2
3

)n
, (3)

with q2 = (p1 − p2)2 = −2p1 ·p2. The expansion coefficients an are given by [7]

an =
(−1)n

(n+ 1)!

n∑
l=0

(
n
l

)
xl1
l!

∂l

∂xl1

∂n

∂xn2
g(x1, x2) , (4)

where

g(x1, x2) =
1

x1 − x2

(
x1 lnx1

1− x1
− x2 lnx2

1− x2

)
, (5)

and xi = m2
i /m

2
3. Notice that in order to properly generate the expansion coefficients an

one has to keep x1 and x2 different even in the zero or equal mass case. The corresponding
limits can only be taken at the end.

To illustrate the convergence behavior of the small momentum expansion of the scalar
integral in Eq. (3) for on-shell kinematics, we confine ourselves to the simplified case m1 =
m2 = M and m3 = mt. We define

δn = an

(
M2

Z

m2
t

)n(n−1∑
l=0

al

(
M2

Z

m2
t

)l)−1

, (6)
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for n = 1, 2, . . . . The M -dependence of the relative deviations δn is displayed in Fig. 1. We
see that while for M . 50 GeV higher order terms in the small momentum expansion have
to be included in order to approximate the exact on-shell result accurately, in the case of
M & 150 GeV the first correction is small and higher order terms are negligible. For the
two reference scales M = {80, 250}GeV one finds for the first three relative deviations δn
numerically +9.3%, +1.4%, and +0.3%, and +1.1%, +0.02%, +0.00004%, respectively.

3 Model calculations

The above considerations can be corroborated in another, yet model-dependent way by
calculating explicitly the difference between the value of the ZdjLd̄

i
L vertex form factor

evaluated on-shell and at zero external momenta. In [6] this has been done in four of the
most popular, consistent, and phenomenologically viable scenarios of CMFV, i.e., the two-
Higgs-doublet model (THDM) type I and II, the minimal-supersymmetric SM (MSSM) with
MFV [3], all for small tanβ, the minimal universal extra dimension (mUED) model [8], and
the littlest Higgs model [9] with T -parity (LHT) [10] and degenerate mirror fermions [11].
In the following we will briefly summarize the most important findings of [6].

In the limit of vanishing bottom quark mass, possible non-universal NP contributions to
the renormalized off-shell ZdjLd̄

i
L vertex can be written as

ΓNP
ji =

GF√
2
e

π2
M2

Z

cW

sW

V ∗tjVtiCNP(q2)d̄jLγµdiLZµ , (7)

where i = j = b and i 6= j in the flavor diagonal and off-diagonal case. GF , e, sW , and cW

denote the Fermi constant, the electromagnetic coupling constant, the sine and cosine of the
weak mixing angle, respectively, while Vij are the corresponding CKM matrix elements.

As a measure of the relative difference between the complex valued form factor CNP(q2)
evaluated on-shell and at zero momentum we introduce

δCNP = 1− ReCNP(q2 = 0)
ReCNP(q2 = M2

Z)
. (8)

The dependence of δCNP on the charged Higgs mass M±H , the lighter chargino mass
M±χ̃1

, the compactification scale 1/R, and xL which parameterizes the mass of the heavy top
T+ is illustrated in Fig. 2. The allowed parameter regions after applying experimental and
theoretical constraints are indicated by the colored (grayish) bands and points.

In the THDMs, the mUED, and the CMFV version of the LHT model the maximal
allowed suppressions of ReCNP(q2 = M2

Z) with respect to ReCNP(q2 = 0) amounts to less
than 2%, 5%, and 4%, respectively. This feature confirms the general argument presented
in the last section. The situation is less favorable in the case of the CMFV MSSM, since
δCMSSM frequently turns out to be larger than one would expected on the basis of the
model-independent considerations if the masses of the lighter chargino and stop both lie
in the hundred GeV range. However, the large deviation δCMSSM are ultimately no cause
of concern, because |ReCMSSM(q2 = 0)/ReCSM(q2 = 0)| itself is always below 10%. In
consequence, the model-independent bounds on the NP contribution to the universal Z-
penguin function that will be derived in the next section do hold in the case of the CMFV
MSSM. More details on the phenomenological analysis of δCNP in the THDMs, the CMFV
MSSM, the mUED, and the LHT model including the analytic expressions for the form
factors CNP(q2) can be found in the recent article [6].
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Figure 2: Relative difference δCNP in the THDMs, the MSSM, the mUED, and the LHT
model as a function of M±H , M±χ̃1

, 1/R, and xL. Regions in the M±χ̃1
– δCMSSM plane where

|ReCMSSM(q2 = 0)| amounts to at least 2%, 4%, and 6% of |ReCSM(q2 = 0)| are indicated
by the red (gray), green (light gray), and blue (dark gray) points, respectively. In the case of
the LHT model the shown curves correspond, from bottom to top, to the values f = 1, 1.5,
and 2 TeV of the symmetry breaking scale. See text for details.

4 Numerical analysis

Using the technique of epsilon parameters a model-independent numerical analysis of ∆C =
ReC(q2 = 0)− ReCSM(q2 = 0) is a back-on-the-envelope calculation. The variation εNP

b =
εb−εSM

b arising from NP contributions to ZbLb̄L can be defined through the inclusive partial
width of Z → bb̄ as follows [12]

ΓNP
bb = (

√
2GFM2

Z)
1
2

(
gbV (b̄γµb)− gbA(b̄γµγ5b)

)
Zµ , (9)

where
gbV
gbA

=
(

1 +
4s2W

3
+ εNP

b

)
gdA
gbA

, gbA = (1 + εNP
b ) gdA . (10)

From Eqs. (7), (8), and (9) one obtains

∆C = − π2

√
2GFM2

Zc
2
W

(1 + δCNP) εNP
b . (11)
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Figure 3: Constraints on ∆Ceff
7 and ∆C

within CMFV that follow from a combination
of the Z → bb̄ POs with the measurements of
B̄ → Xsγ and B̄ → Xsl

+l−. The colors en-
code the frequentist 1−CL level and the cor-
responding 68% and 95% probability regions
as indicated by the bars on the right side of
the panels. See text for details.

By combining experimental [13] and theo-
retical uncertainties [15] in εb and εSM

b lin-
early one finds

εNP
b = (0.4± 2.5)× 10−3 . (12)

Assuming δCNP = ±0.1 one then arrives at

∆C = −0.04± 0.26 , (13)

which implies that large negative contribu-
tions that would reverse the sign of the SM
Z-penguin amplitude are highly disfavored
in CMFV scenarios due to the strong con-
straint from R0

b [6]. Interestingly, such a
conclusion cannot be drawn by considering
only flavor constraints [14], since a combi-
nation of B(B̄ → Xsγ), B(B̄ → Xsl

+l−),
and B(K+ → π+νν̄) does not allow to dis-
tinguish the SM solution ∆C = 0 from the
wrong-sign case ∆C ≈ −2 at present.

The result in Eq. (13) agrees amazingly
well with the numbers of a thorough global
fit to the POs R0

b , Ab, and A0,b
FB [13] and the measured B̄ → Xsγ [17] and B̄ → Xsl

+l−

[18] BRs obtained by employing customized versions of the ZFITTER [15] and the CKMfitter
package [19]. Neglecting contributions from EW boxes these bounds read [6]

∆C = −0.026± 0.264 (68% CL) ,
∆C = [−0.483, 0.368] (95% CL) .

(14)

The constraint on ∆C within CMFV following from the simultaneous use of R0
b , Ab, A

0,b
FB,

B(B̄ → Xsγ), and B(B̄ → Xsl
+l−) can be seen in Fig. 3.

One can also infer from this figure that two regions, resembling the two possible signs of
the amplitude A(b→ sγ) ∝ Ceff

7 (mb), satisfy all existing experimental bounds. The best fit
value for ∆Ceff

7 = Ceff
7 (mb)−Ceff

7 SM(mb) is very close to the SM point residing in the origin,
while the wrong-sign solution located on the right is highly disfavored, as it corresponds to a
B(B̄ → Xsl

+l−) value considerably higher than the measurements [20]. The corresponding
limits are [6]

∆Ceff
7 = −0.039± 0.043 (68% CL) ,

∆Ceff
7 = [−0.104, 0.026] ∪ [0.890, 0.968] (95% CL) .

(15)

Similar bounds have been presented previously in [14]. Notice that since the SM prediction
of B(B̄ → Xsγ) [16] is now lower than the experimental world average by 1.2σ, extensions
of the SM that predict a suppression of the b → sγ amplitude are strongly constrained. In
particular, even the SM point ∆Ceff

7 = 0 is almost disfavored at 68% CL by the global fit.

The stringent bound on the NP contribution ∆C given in Eq. (14) translates into tight
two-sided limits for the BRs of all Z-penguin dominated flavor-changing K- and B-decays as

DIS 2007DIS 2007 463



Observable CMFV SM Experiment
B(K+ → π+νν̄)× 1011 [4.29, 10.72] [5.40, 9.11]

(
14.7+13.0

−8.9

)
[21]

B(KL → π0νν̄)× 1011 [1.55, 4.38] [2.21, 3.45] < 2.1× 104 (90% CL) [22]
B(KL → µ+µ−)SD × 109 [0.30, 1.22] [0.54, 0.88] –
B(B̄ → Xdνν̄)× 106 [0.77, 2.00] [1.24, 1.45] –
B(B̄ → Xsνν̄)× 105 [1.88, 4.86] [3.06, 3.48] < 64 (90% CL) [23]
B(Bd → µ+µ−)× 1010 [0.36, 2.03] [0.87, 1.27] < 3.0× 102 (95% CL) [24]
B(Bs → µ+µ−)× 109 [1.17, 6.67] [2.92, 4.13] < 9.3× 101 (95% CL) [25]

Table 1: Bounds for various rare decays in CMFV and the SM at 95% CL. The available
experimental information is also shown. See text for details.

shown in Tab. 4. A strong violation of any of the bounds by future measurements will imply
a failure of the CMFV assumption, signaling either the presence of new effective operators
and/or new flavor and CP violation. A way to evade the given limits is the presence of
sizable corrections δCNP and/or box contributions. While these possibilities cannot be fully
excluded, general arguments and explicit calculations indicate that they are both difficult
to realize in the CMFV framework.

5 Conclusions

R.I.P. large destructive CMFV Z-penguin!

6 Post scriptum

Assuming the correctness of the SM, the 1.2σ deviation between the most recent SM pre-
diction [16] and the measured value of B̄ → Xsγ can be accommodated by a value of the
strong coupling constant that is higher than the world average of αs(MZ) [26]. Using the
same input as in [16], the next-to-next-to-leading order SM estimate and the measurements
of B̄ → Xsγ would agree within errors for the nominal value

αs(MZ) = 0.129± 0.006expt ± 0.005theo . (16)

Of course, trying to explain the slight tension in B̄ → Xsγ by a shift in αs(MZ) should be
considered a purely academic exercise. Nothing more, nothing less.
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