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-Université Paris-Sud-CNRS, 91405-Orsay, France

The exclusive reaction of rho meson pair electroproduction in γ∗γ∗ collisions is a nice
place to study various dynamics and factorization properties in the perturbative sector
of QCD. At low energy (quarks dominance), this process can be considered as a way
to explore QCD factorizations involving generalized distribution amplitudes (GDA)
and transition distribution amplitudes (TDA), and, in the Regge limit of QCD (gluons
dominance), it seems to offer a promising probe of the BFKL resummation effects which
could be studied at the next international linear collider (ILC).

1 GDA/TDA factorizations at low energy

1.1 The Born order amplitude

We calculate [1] the scattering amplitude of the process γ∗(q1)γ∗(q2) → ρ0
L(k1)ρ0

L(k2) at
Born order for both transverse and longitudinal polarizations in the forward kinematics,
when quark exchanges dominate. The virtualities Q2

i = −q2
i , supply the hard scale which

justifies the perturbative computation of the amplitude MH . The final states ρ mesons are
described in the collinear factorization by their distribution amplitudes (DA) in a similar
way as in the classical work of Brodsky-Lepage [2].

1.2 γ∗T γ
∗
T → ρ0

Lρ
0
L in the generalized Bjorken limit
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Figure 1: Factorization of the amplitude in terms of a GDA which is expressed in a perturbatively
computed GDAH convoluted with the DAs of the two ρ-mesons.

We then consider transverse photons whose scattering energy is much smaller than the
typical scales of the process (close to the semi-exclusive limit in DIS when xBj → 1). We
obtain the same expression of the amplitude computed previously (Sec. 1.1) in a different
theoretical framework which is based on the factorization property of the scattering ampli-
tude in terms of a hard coefficient function TH convoluted with a GDA encoding the softer
part of the process, as illustrated in Fig. 1.

1.3 γ∗Lγ
∗
L → ρ0

Lρ
0
L with strong ordering of virtualities

DIS 2007DIS 2007 739



PSfrag replacements

q1

q2
TDAH

TH

DA

PSfrag replacements
q1q2

TDAH
TH

DA
ρ(k1)

PSfrag replacements
q1

q2

TDAH

TH
DA

PSfrag replacements
q1q2

TDAH
TH

DA
ρ(k2)

Figure 2: Factorization involving a
TDA which is written as the con-
volution of a hard term TDAH and
a DA of the ρ-meson.

In the regime with strong ordering of the virtualities
Q2

1 � Q2
2, we compute the amplitude with initial longitu-

dinally polarized photons, in a factorized formula involv-
ing a convolution of a hard coefficient function TH and a
γ∗ → ρ TDA. This soft part is defined with the leading
twist quark-antiquark non local correlator between non-
diagonal matrix elements corresponding to the γ → ρ
transition. We also obtain the same expression as in the
direct calculation of the Sec. 1.1 in this kinematics.

2 k⊥-factorization in the Regge limit of
QCD

2.1 Impact factor representation

We are focusing now on the high-energy (Regge) limit,
when the cm energy sγ∗γ∗ is much larger than all other
scales of the process, in which t−channel gluonic ex-
changes dominate [3]. The highly virtual photons provides ones small transverse size objects
(qq̄ color dipoles) whose scattering is the cleanest place to study the typical Regge behaviour
with t−channel BFKL Pomeron exchange [4], in perturbative QCD. If one selects the events
with comparable photon virtualities, the BFKL resummation effects dominate with respect
to the conventional partonic evolution of DGLAP [5] type. Several studies of BFKL dy-
namics have been performed at the level of the total cross-section [6]. At high energy, the
impact factor representation of the scattering amplitude has the form of a convolution in
the transverse momentum k space between the two impact factors corresponding to the
transition of γ∗L,T (qi) → ρ0

L(ki) via the t−channel exchange of two reggeized gluons (with
momenta k and r − k).

2.2 Non-forward cross-section at ILC for e+e− → e+e−ρ0
L ρ

0
L
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Figure 3: The amplitude of
the process γ∗L,T (q1)γ∗L,T (q2) →
ρ0
L(k1)ρ0

L(k2) in the impact repre-
sentation.

Our purpose is now to evaluate at Born order and in
the non-forward case the cross-section of the process
e+e− → e+e−ρ0

L ρ0
L in the planned experimental condi-

tions of the International Linear Collider (ILC). We focus
on the LDC detector project and we use the potential
of the very forward region accessible through the elec-
tromagnetic calorimeter BeamCal which may be installed
around the beampipe at 3.65 m from the interaction point.
This calorimeter allows to detect (high energetic) parti-
cles down to 4 mrad. This important technological step
was not feasible a few years ago. At ILC, the foreseen
cm energy is

√
s = 500 GeV. Moreover we impose that

sγ∗γ∗ > cQ1Q2 (where c is an arbitrary constant). It is
required by the Regge kinematics for which the impact
representation is valid. We choose Qi to be bigger than 1
GeV since it provides the hard scale of the process. Qimax
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will be fixed to 4 GeV: indeed the various amplitudes involved are completely negligible for
higher values of virtualities.
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Figure 4: Cross-sections for e+e− →
e+e−ρ0

L ρ0
L process. Starting from

above, we display the cross-sections cor-
responding to the γ∗Lγ

∗
L mode, to the

γ∗Lγ
∗
T modes, to the γ∗T γ

∗
T ′ modes with

different T 6= T ′ and finally to the γ∗T γ
∗
T ′

modes with the same T = T ′.

We now display in Fig.4 the cross-sections as a
function of the momentum transfer t for the different
γ∗ polarizations. For that we performed analytically
the integrations over k (using conformal transforma-
tions to reduce the number of massless propagators)
and numericaly the integration over the accessible
phase space. We assume the QCD coupling constant
to be αs(

√
Q1Q2) running at three loops, the param-

eter c = 1 which enters in the Regge limit condition
and the energy of the beam

√
s = 500 GeV. We see

that all the differential cross-sections which involve
at least one transverse photon vanish in the forward
case when t = tmin, due to the s-channel helicity
conservation. We finally display in the Table.1 the
results for the total cross-section integrated over t for
various values of c. With the foreseen nominal inte-
grated luminosity of 125 fb−1, this will yield 4.26 103

events per year with c = 1.
By looking into the upper curve in the Fig.4 re-

lated to the longitudinal polarizations, one sees that
the point t = tmin gives the maximum of the total cross-section (since the transverse polar-
ization case vanishes at tmin) and then practically dictates the trend of the total cross-section
which is strongly peaked in the forward direction (for the longitudinal case) and strongly
decreases with t (for all polarizations). From now we only consider the forward dynamics.

c σTotal (fb)
1 34.1
2 29.6
10 20.3

Table 1: Total
cross-section for
various c.

The Fig.5 shows the cross-section (for both gluons and quarks ex-
changes) at tmin for different values of the parameter c which enters in
the Regge limit condition : the increase of c leads to the suppression
of quarks exchanges (studied in section 1) and we base the value of
c chosen previously on the gluon exchange dominance over the quark
exchange contribution.

The ILC collider is expected to run at a cm nominal energy of 500
GeV, though it might be extended in order to cover a range between 200
GeV and 1 TeV. Although the Born order cross-sections do not depend
on s, the triggering effects introduce an s-dependence; note that the

cross-section falls down between 500 GeV and 1 TeV. The measurability is then optimal
when

√
s = 500 GeV. The results obtained at Born approximation can be considered as a

lower limit of the cross-sections for ρ-mesons pairs production with complete BFKL evolution
taken into account. We consider below only the point t = tmin and we restrict ourselves to
the leading order (LO) BFKL evolution in the saddle point approximation.

From previous studies at the level of γ∗γ∗ [7], the NLO contribution is expected to be
between the LO and Born order cross-sections. This ordering will be preserved at the level
of the e+e− process. The comparison of Figs.5 with Figs.6 leads to the conclusions that the
BFKL evolution changes the shape of the cross-section: when increasing

√
s from 500 GeV

to 1 TeV, the two gluon exchange cross-section will fall down, while the cross-section with
the BFKL resummation effects taken into account should more or less stay stable, with a
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high number of events to be still observed for these cm energies.

200 400 600 800 1000

50

100

150

200

250

300

PSfrag replacements

k1

k2

q1

q2

r √
s (GeV )

dσtmin

dt (fb/GeV 2)

Figure 5: Cross-sections for e+e− → e+e−ρ0
L ρ0

L

at t = tmin for different values of the parameter
c: the red (black) curves correspond to c = 1,
the green (dark grey) curves to c = 2 and and
the yellow (light grey) curves to c = 3. For each
value of c, by decreasing order the curves cor-
respond to gluon-exchange, quark-exchange with
longitudinal virtual photons and quark-exchange
with transverse virtual photons.
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Figure 6: Cross-sections for e+e− →
e+e−ρ0

L ρ
0
L with LO BFKL evolution at t =

tmin for different αs : the upper and lower
red (black) curves for αs running respectively
at one and three loops and the green one for
αs = 0.46.
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