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The amplitude for the forward electroproduction of two light vector mesons can be
written completely within perturbative QCD in the Regge limit with next-to-leading
accuracy, thus providing the first example of a physical application of the BFKL ap-
proach at the next-to-leading order. We study in the case of equal photon virtualities
the main systematic effects, by considering a different representation of the amplitude
and different optimization methods of the perturbative series.

1 Introduction

In the BFKL approach [2], both in the leading logarithmic approximation (LLA), which
means resummation of all terms (αs ln(s))n, and in the next-to-leading approximation
(NLA), which means resummation of all terms αs(αs ln(s))n, the amplitude for a large-
s hard collision process can be written as the convolution of the Green’s function of two
interacting Reggeized gluons with the impact factors of the colliding particles.

The Green’s function is determined through the BFKL equation. The kernel of the BFKL
equation is known now both in the forward [3] and in the non-forward [4] cases. On the
other side, impact factors are known with NLA accuracy in a few cases: colliding partons [5],
forward jet production [6] and forward transition from a virtual photon γ∗ to a light neutral
vector meson V = ρ0, ω, φ [7]. The most important impact factor for phenomenology, the
γ∗ → γ∗ impact factor, is calling for a rather long calculation, which seems to be close to
completion now [8, 9].

The γ∗ → V forward impact factor can be used together with the NLA BFKL forward
Green’s function to build, completely within perturbative QCD and with NLA accuracy, the
amplitude of the γ∗γ∗ → V V reaction. This amplitude provides us with an ideal theoretical
laboratory for the investigation of several open questions in the BFKL approach. Besides,
this process can be studied experimentally at the future at ILC, see Refs. [10].

2 Representations of the NLA amplitude

The process under consideration is the production of two light vector mesons (V = ρ0, ω, φ)
in the collision of two virtual photons, γ∗(p) γ∗(p′) → V (p1) V (p2). Here, neglecting the
meson mass mV , p1 and p2 are taken as Sudakov vectors satisfying p2

1 = p2
2 = 0 and

2(p1p2) = s; the virtual photon momenta are instead p = αp1 − Q2
1/(αs)p2 and p′ =

α′p2 − Q2
2/(α

′s)p1, so that the photon virtualities turn to be p2 = −Q2
1 and (p′)2 = −Q2

2.
We consider the kinematics when s� Q2

1,2 � Λ2
QCD and α = 1 +Q2

2/s+O(s−2), α′ = 1 +

Q2
1/s+O(s−2). In this case vector mesons are produced by longitudinally polarized photons

in the longitudinally polarized state [7]. Other helicity amplitudes are power suppressed,
with a suppression factor ∼ mV /Q1,2. We will discuss here the amplitude of the forward
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scattering, i.e. when the transverse momenta of produced V mesons are zero or when the
variable t = (p1 − p)2 takes its maximal value t0 = −Q2

1Q
2
2/s+O(s−2).

The NLA forward amplitude can be written as a spectral decomposition on the basis of
eigenfunctions of the LLA BFKL kernel:
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(1)

Here the bulk of NLA kernel corrections are exponentiated, ᾱs = αsNc/π and D1,2 =
−4πeqfV /(NcQ1,2), where fV is the meson dimensional coupling constant (fρ ≈ 200 MeV)
and eq should be replaced by e/

√
2, e/(3

√
2) and −e/3 for the case of ρ0, ω and φ meson

production, respectively. Two scales enter the expression (1), the renormalization scale µR
and the scale for energy s0.

Alternatively, the amplitude can be expressed as a series:

Q1Q2

D1D2

Ims(Aseries)
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=

1

(2π)2
αs(µR)2 (2)

×
[
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(
ln

(
s
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+ dn(s0, µR) ln

(
s
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.

The bn coefficients are determined by the kernel and the impact factors in LLA, while the
dn coefficients depend also on the NLA corrections to the kernel and to the impact factors.
We refer to Ref. [11] for the details of the derivation and for the definition of the functions
entering these expressions.

3 Numerical results

In Ref. [11] we presented some numerical results for the amplitude given in Eq. (2) for
the Q1 = Q2 ≡ Q kinematics, i.e. in the “pure” BFKL regime. We found that the dn
coefficients are negative and increasingly large in absolute values as the perturbative order
increases, making evident the need of an optimization of the perturbative series. We adopted
the principle of minimal sensitivity (PMS) [12], by requiring the minimal sensitivity of the
predictions to the change of both the renormalization and the energy scales, µR and s0.
We considered the amplitude for Q2=24 GeV2 and nf = 5 and studied its sensitivity to
variation of the parameters µR and Y0 = ln(s0/Q

2). We could see that for each value of
Y = ln(s/Q2) there are quite large regions in µR and Y0 where the amplitude is practically
independent on µR and Y0 and we got for the amplitude a smooth behaviour in Y (see
the curve labeled “series - PMS” in Figs. 1 and 2). The optimal values turned out to be
µR ' 10Q and Y0 ' 2, quite far from the kinematical values µR = Q and Y0 = 0. These
“unnatural” values probably mimic large unknown NNLA corrections.

DIS 2007720 DIS 2007



2 4 6 8 10
Y

0.01

0.02

0.03

0.04

0.05

0.06
exp. - PMS

series - PMS

2 4 6 8 10
Y

0.01

0.02

0.03

0.04

0.05

series - FAC

series - PMS

Figure 1: Ims(A)Q2/(sD1D2) as a function of Y at Q2=24 GeV2 (nf = 5): (left) series represen-
tation with PMS and “exponentiated” representation with PMS, (right) series representation with
PMS and with FAC.

As an estimation of the systematic effects in our determination, we considered also
the “exponentiated” representation of the amplitude, Eq. (1), and different optimization
methods. For more details on the following, see Ref. [13].

At first, we compare the series and the “exponentiated” determinations using in both
case the PMS method. The optimal values of µR and Y0 for the “exponentiated” amplitude
are quite similar to those obtained in the case of the series representation, with only a slight
decrease of the optimal µR. Fig. 1 (left) shows that the two determinations are in good
agreement at the lower energies, but deviate increasingly for large values of Y . It should
be stressed, however, that the applicability domain of the BFKL approach is determined by
the condition ᾱs(µR)Y ∼ 1 and, for Q2=24 GeV2 and for the typical optimal values of µR,
one gets from this condition Y ∼ 5. Around this value the discrepancy between the two
determinations is within a few percent.

As a second check, we changed the optimization method and applied it both to the series
and to the “exponentiated” representation. The method considered is the fast apparent
convergence (FAC) method [14], whose strategy, when applied to a usual perturbative ex-
pansion, is to fix the renormalization scale to the value for which the highest order correction
term is exactly zero. In our case, the application of the FAC method requires an adaptation,
for two reasons: the first is that we have two energy parameters in the game, µR and Y0, the
second is that, if only strict NLA corrections are taken, the amplitude does not depend at
all on these parameters. For details about the application of this method, we refer to [13].
Here, we merely show the results: the FAC method applied to the series representation (see
Fig. 1 (right)) and to the exponentiated representation (see Fig. 2 (left)) gives results in nice
agreement with those from the PMS method applied to the series representation, over the
whole energy range considered.

Another popular optimization method is the Brodsky-Lepage-Mackenzie (BLM) one [15],
which amounts to perform a finite renormalization to a physical scheme and then to choose
the renormalization scale in order to remove the β0-dependent part. We applied this method
only to the series representation, Eq. (2). The result is compared with the PMS method in
Fig. 2 (right) (for details, see Ref. [13]).
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Figure 2: Ims(A)Q2/(sD1D2) as a function of Y at Q2=24 GeV2 (nf = 5): (left) series represen-
tation with PMS and “exponentiated” representation with FAC, (right) series representation with
PMS and with BLM.
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