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The azimuthal angle correlation of Mueller–Navelet jets at hadron colliders is studied
in the NLO BFKL formalism. We highlight the need of collinear improvements in the
kernel to obtain good convergence properties and we obtain better fits for the Tevatron
data than at LO accuracy. We also estimate these correlations for larger rapidity
differences available at the LHC.

1 BFKL cross sections

In [2] we continue the study initiated in [3] of azimuthal correlations in Mueller–Navelet
jets [4] using the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation in the next–to–leading
(NLO) approximation [5]. We investigate normalized differential cross sections which are
quite insensitive to parton distribution functions and read
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where ᾱs = αsNc/π, ~q1,2 are the transverse momenta of the tagged jets, and Y their rel-
ative rapidity. The Green’s function carries the Y–dependence and follows the NLO equa-

tion,
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2 einθ. As Y increases the azimuthal dependence is driven by the

kernel. This is why we use the LO jet vertices which are simpler than at NLO. The differ-
ential cross section in the azimuthal angle φ = θ1 − θ2 − π, with θi being the angles of the
two tagged jets, is
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, with ψ the

logarithmic derivative of the Euler function. The action of K̂1, in MS scheme, can be found
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in [6]. The full cross section only depends on the n = 0 component, σ̂ =
π3ᾱ2
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average of the cosine of the azimuthal angle times an integer projects out the contribution
from each of these angular components:
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The BFKL resummation is not stable at NLO [7, 8]. In the gluon–bremsstrahlung scheme
our distributions become unphysical. To improve the convergence we impose compatibility
with renormalization group evolution in the DIS limit [9] for all angular components. A
good scheme is the angular extension of that discussed in [8], first proposed in [7]:
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where An and Bn are collinear coefficients. After this collinear resummation our observables
have a good physical behavior and are independent of the renormalization scheme.

2 Phenomenology

The D∅ [11] collaboration analyzed data for Mueller–Navelet jets at
√
s = 630 and 1800

GeV. For the angular correlation LO BFKL predictions were first obtained in [12, 13] and
failed to describe the data estimating too much decorrelation. An exact fixed NLO analysis
using JETRAD underestimated the decorrelation, while HERWIG was in agreement with
the data.

In Fig. 2 we compare the Tevatron data for 〈cosφ〉 = C1/C0 with our LO, NLO and
resummed predictions. For Tevatron’s cuts, where the transverse momentum for one jet is
20 GeV and for the other 50 GeV, the NLO calculation is instable under renormalization
scheme changes. The convergence of our observables is poor whenever the coefficient associ-
ated to zero conformal spin, C0, is involved. If we eliminate this coefficient by calculating the
ratios defined in Eq. (1) then the predictions are very stable, see Fig. 2. The full angular de-
pendence studied at the Tevatron by the D∅ collaboration was published in [11]. In Fig. 1 we
compare this measurement with the predictions obtained in our approach. For the differen-
tial cross section we also make predictions for the LHC at larger Y in Fig. 3. Our calculation
is not exact and we estimated several uncertainties, which are represented by gray bands.
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Figure 1: 1
N
dN
dφ in a pp̄ collider at

√
s=1.8 TeV using a LO (stars), NLO (squares) and

resummed (triangles) BFKL kernel. Plots are shown for Y = 3 (left) and Y = 5 (right).
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Figure 2: Left: 〈cosφ〉 = C1/C0 and Right: <cos 2φ>
<cosφ> = C2

C1 , at a pp̄ collider with
√
s = 1.8 TeV

for BFKL at LO (solid) and NLO (dashed). The results from the resummation presented
in the text are shown as well (dash–dotted).
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Figure 3: 1
σ
dσ
dφ in our resummation scheme for

rapidities Y = 7, 9, 11 from top to bottom.
The gray band reflects the uncertainty in s0

and in the renormalization scale µ.

3 Conclusions

We have presented an analytic study of
NLO BFKL corrections in azimuthal an-
gle decorrelations for Mueller–Navelet jets
at hadron colliders. We found that the in-
tercepts for non–zero conformal spins have
good convergence. The zero conformal spin
component needs of a collinear improve-
ment to get stable results. Uncertainties
in our study can be reduced using Monte
Carlo techniques. We compared to the data
extracted at the Tevatron many years ago.
Our results improve with respect to the LO
BFKL predictions but show too much az-
imuthal angle decorrelation. The LHC at
CERN will have larger rapidity differences
and will be a very useful tool to investigate the importance of BFKL effects in multijet
production [15].

References

[1] Slides:
http://indico.cern.ch/contributionDisplay.py?contribId=281&sessionId=8&confId=9499

[2] A. Sabio Vera, F. Schwennsen, Nucl. Phys. B 776 (2007) 170.

[3] A. Sabio Vera, Nucl. Phys. B 746 (2006) 1.

[4] A. H. Mueller, H. Navelet, Nucl. Phys. B 282 (1987) 727.

[5] V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127 (1998);
G. Camici, M. Ciafaloni, Phys. Lett. B 430, 349 (1998).

[6] A. V. Kotikov, L. N. Lipatov, Nucl. Phys. B 582 (2000) 19.

[7] G. P. Salam, JHEP 9807, 019 (1998).

[8] A. Sabio Vera, Nucl. Phys. B 722 (2005) 65.

[9] M. Ciafaloni, D. Colferai, G. P. Salam, A. M. Stasto, Phys. Rev. D 68 (2003) 114003.

[10] B. Abbott et al., Phys. Rev. Lett. 84 (2000) 5722.

[11] S. Abachi et al., Phys. Rev. Lett. 77 (1996) 595.

[12] V. Del Duca, C. R. Schmidt, Phys. Rev. D 49 (1994) 4510.

[13] W. J. Stirling, Nucl. Phys. B 423 (1994) 56.

[14] C. L. Kim, FERMILAB-THESIS-1996-30.

[15] J. Bartels, A. Sabio Vera, F. Schwennsen, JHEP 0611 (2006) 051.

DIS 2007368 DIS 2007


