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The Standard Approach (SA) for the description of the structure function g1 combines
the DGLAP evolution equations with the standard fits for the initial parton densities.
The DGLAP equations describe the region of large Q2 and large x, so there are no
theoretical grounds to exploit them at small x. In practice, extrapolation of DGLAP
into the region of small x is done by complementing DGLAP with ad hoc, singular
(∼ x−a) phenomenological fits for the initial parton densities. The factors x−a are
wrongly believed to be of non-perturbative origin. Actually, they mimic the summation
of logs of x and should not be included in the fits when the summation is accounted
for. Contrary to SA, the summation of logarithms of x is a straightforward and natural
way to describe g1 in the small-x region. This approach can be used both at large and
small Q2 where DGLAP cannot be used by definition. Confronting this approach and
SA shows that the singular initial parton densities and the power Q2-corrections (or at
least a sizable part of them) do not describe real physical phenomena but they are just
artifacts caused by extrapolating DGLAP into the small-x region.

1 Introduction

The Standard Approach (SA) for description of the structure function g1 involves the
DGLAP evolution equations[2] and standard fits[3] for the initial parton densities δq and δg.
The fits are defined from phenomenological considerations at x ∼ 1 and Q2 = µ2 ∼ 1 GeV2.
The DGLAP equations are one-dimensional, and describe the Q2 -evolution only, converting
δq and δg into the evolved distributions ∆q and ∆g. They represent g1 at the region A:

A: Q2 � µ2 , x . 1 . (1)

The x -evolution is supposed to come by convoluting ∆q and ∆g with the coefficient functions
CDGLAP . However, in the leading order CLODGLAP = 1 and the NLO corrections account for
one- or two- loop contributions and neglect higher loops. It is the correct approximation in
the region A but becomes false in the region B:

B: Q2 � µ2 , x� 1 (2)

where contributions ∼ lnk(1/x) are large and should be accounted for to all orders in αs.
CDGLAP do no include the total summation of leading logarithms of x (LL), so there are
no theoretical grounds to exploit DGLAP at small x. However, SA extrapolates DGLAP
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into the region B, invoking special fits for δq and δg. The general structure of such fits (see
Refs. [3]) is as follows:

δq = Nx−aϕ(x) (3)

where N is a normalization constant; a > 0, so x−a is singular when x → 0, and ϕ(x) is
regular in x at x → 0. As we showed in Ref. [4], the factor x−a in Eq. (3) just mimics the
result of LL performed in Refs [5, 6]. Similarly to LL, the factor x−a provides the steep
rise to g1 at small x and sets the Regge asymptotics for g1 at x → 0, with the exponent a
being the intercept. The presence of this factor is very important for extrapolating DGLAP
into the region B: When the factor x−a is dropped from Eq. (3), DGLAP stops to work
at x . 0.05 (see Ref. [4] for detail). Accounting for LL is beyond the DGLAP framework
because LL come from the phase space region not included in the DGLAP ordering. Indeed
the DGLAP -ordering is

µ2 < k2
1 ⊥ < k2

2 ⊥ < ... < Q2 (4)

for the ladder partons. LL can be accounted only when the ordering Eq. (4) is lifted and
all ki ⊥ obey

µ2 < k2
i ⊥ < (p+ q)2 ≈ (1− x)2(pq) ≈ 2(pq) (5)

at small x. Replacing Eq. (4) by Eq. (5) leads inevitably to the change of the DGLAP
parametrization

αDGLAPs = αs(Q
2) (6)

by the alternative parametrization of αs obtained in Ref. [7] and used in Refs. [5, 6] in
order to find explicit expressions accounting for LL for g1 in the region B. Obviously, those
expressions require fits for the initial parton densities without singular factors x−a. Let us
note that the replacement of Eq. (4) by Eq. (5) brings a more involved µ -dependence to
g1. Indeed, Eq. (4) makes the contributions of gluon ladder rungs to be infrared (IR) stable,
with µ acting as a IR cut-off for the lowest rung and ki ⊥ playing the role of the IR cut-off
for the i+ 1-rung. In contrast, Eq. (5) implies that µ acts as the IR cut-off for every rung.

Besides the regions A and B, it is also necessary to know g1 in the region C:

C: Q2 < µ2 , x� 1 . (7)

This region is studied experimentally by the COMPASS collaboration. Obviously, DGLAP
cannot be exploited here. Alternatively, in Refs. [8, 9] we obtained expressions for g1 in the
region C. In particular, in Ref. [8] we showed that g1 practically does not depend on x at
small x, even at x� 1. Instead, it depends on the total invariant energy 2(pq). Experimental
investigation of this dependence is extremely interesting because according to our results g1,
being positive at small 2(pq), can turn negative at greater values of this variable. The
position of the turning point is sensitive to the ratio between the initial quark and gluon
densities, so its experimental detection would enable to estimate this ratio. In Ref. [9] we
have analyzed the power contributions ∼ 1/(Q2)k to g1 usually attributed to higher twists.
We have proved that a great amount of those corrections have a simple perturbative origin
and have summed them. Therefore, the genuine impact of higher twists can be estimated
only after accounting for the perturbative Q2 -corrections.
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2 Description of g1 in the regions B and C

The total sum of the double-logarithms (DL) and single-logarithms of x in the region B was
done in Refs. [5, 6]. In particular, the non-singlet component, gNS1 of g1 is

gNS1 (x,Q2) = (e2
q/2)

∫ ı∞

−ı∞

dω

2πı
(1/x)ωCNS(ω)δq(ω) exp

(
HNS(ω) ln(Q2/µ2)

)
, (8)

with the new coefficient function CNS and new anomalous dimension HNS . HS and CNS
account for DL and SL contributions to all orders in αs and depend on the IR cut-off µ. As
is shown in Refs. [5, 6], there exists an optimal scale for fixing µ: µ ≈ 1 Gev for gNS1 and
µ ≈ 5 GeV for gS1 . The arguments in favor of existence of the optimal scale were given in
Ref. [9]. Eq. (8) predicts that g1 has the power behavior in x and Q2 when x→ 0:

gNS1 ∼
(
Q2/x2

)∆NS/2
, gS1 ∼

(
Q2/x2

)∆S/2
(9)

where the non-singlet and singlet intercepts are ∆NS = 0.42 and ∆S = 0.86 respectively.
The asymptotic expressions (9) should be used with great care: According to Ref. [4], Eq. (9)
should not be used at x & 10−6. So, Eq. (8) should be used instead of Eq. (9) in the region
of small x so far available. Expressions accounting LL for the singlet g1 in the region B were
obtained in Ref. [6]. They are more complicated because involve two coefficient functions
and four anomalous dimensions.

Region C is defined in Eq. (7). It includes small Q2, so there are not large contributions
lnk(Q2/µ2) in this region. In other words, the DGLAP ordering of Eq. (4) does not make
sense in the region C , which makes impossible exploiting DGLAP here. In contrast, Eq. (4)
is not sensitive to the value of Q2 and therefore LL does make sense in the region C. In
Ref. [8] we suggested that the shift

Q2 → Q2 + µ2 (10)

allows to extrapolate our previous results obtained in the region B to the region C. Then
in Ref. [9] we proved this suggestion. Therefore, applying Eq. (10) to gNS1 leads to the
following expression for gNS1 valid simultaneously in the regions B and C:

gNS1 (x+ z,Q2) = (e2
q/2)

∫ ı∞

−ı∞

dω

2πı

( 1

x+ z

)ω
CNS(ω)δq(ω) exp

(
HNS(ω) ln

(
(Q2 + µ2)/µ2

))
,

(11)
where z = µ2/2(pq). Obviously, Eq. (11) reproduces Eq. (8) in the region B. Expression for
gS1 looks similarly but more complicated, see Refs. [8, 9] for detail.

3 Prediction for the COMPASS experiments

The COMPASS collaboration now measures the singlet gS1 at x ∼ 10−3 and Q2 . 1 GeV2,
i.e. in the kinematic region beyond the reach of DGLAP. However, our formulae for gNS1 and
gS1 obtained in Refs. [8, 9] cover this region. Although expressions for singlet and non-singlet
g1 are different, with formulae for the singlet being much more complicated, we can explain
the essence of our approach, using Eq. (11) as an illustration. According to results of [6],
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µ ≈ 5 GeV for gS1 , so in the COMPASS experiment Q2 � µ2. It means, lnk(Q2 + µ2) can
be expanded into series in Q2/µ2, with the first term independent of Q2:

gS1 (x+ z,Q2, µ2) = gS1 (z, µ2) +
∑

k=1

(Q2/µ2)kEk(z) (12)

where Ek(z) account for LL in z and

gS1 (z, µ2) = (< e2
q/2 >)

∫ ı∞

−ı∞

dω

2πı

(
1/z
)ω[

CqS(ω)δq(ω) + CgS(ω)δg(ω)
]
, (13)

so that δq(ω) and δg(ω) are the initial quark and gluon densities respectively and Cq,gS are
the singlet coefficient functions. Explicit expressions for Cq,gS are given in Refs. [6, 8]. The
initial parton densities can be approximated by constants: δq ≈ Nq and δg ≈ Ng, so

g1(Q2 � µ2) ≈ (< e2
q > /2)NqG1(z) , G1 =

∫ ı∞

−ı∞

dω

2πı
(1/z)ω

[
CqS + (Ng/NqC

g
S)
]
. (14)

The results for G1 for different values of the ratio r = Ng/Nq are shown in Fig. 1.
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Figure 1: G1 evolution with decreasing
z = µ2/2(pq) for different values of ratio
r = δg/δq: curve 1 - for r = 0, curve 2
- for r = −5 , curve 3 -for r = −8 and
curve 4 -for r = −15.
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