DGLAP and BFKL equations in N =4 SUSY
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The properties of the BFKL kernel in the next-to-leading approximation in QCD and
in supersymmetric models are discussed. The maximal transcendality of anomalous
dimensions in N = 4 SUSY is formulated. The explicit expressions for the anomalous
dimensions up to four loops are given. Their asymptotic behavior at j — co and in the
singular points j = 1,0, —1, ... is compared with predictions.

1 Introduction

The QCD scattering amplitude in the leading logarithmic approximation (LLA) has the
Regge-type asymptotics with the gluon trajectory in one loop given below
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In the coordinate representation the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation
for the Pomeron wave function can be written as follows [2]
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where A is the Pomeron intercept. The BFKL Hamiltonian in the operator form is simple [3]
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where p12 = p1 — p2. It is invariant under the Mobius transformation [4] and has the
property of the holomorphic separability [3]. The quantum numbers of the Mdbius group
are the anomalous dimension v = % + iv and the conformal spins n.

The Bartels-Kwiecinskii-Praszalowicz (BKP) equation [5] for the n-gluon composite
states in the large-N, limit has the duality symmetry [6], is integrable [3, 7] and equivalent
to a Scgrodinger equation for the Heisenberg spin model [8]. To restore the s-channel
unitarity one can use the effective field theory for Reggeized gluons [9]-[11].

2 DGLAP and BFKL dynamics in N =4 SUSY

In the next-to-leading approximation the eigenvalue of the BFKL kernel is written below
w=wo(n, y) +4 a>A(n,7), a=g°N./(167°). (4)

In QCD A(n, ) is a non-analytic function of the conformal spin |n| [12, 13], but in N = 4

SUSY the Kroniker symbols are cancelled [13]. In this model we obtain for A(n,~v) the

result
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p(M) = F () + 50(2), () = ¢ | v/ (F52) ~w (2)], (6)
where all special functions have the maximal trancedentality property [13]
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For one loop anomalous dimension matrix in the case N = 4 the calculations were
performed in Ref. [14]. In this model all twist-2 operators belong to the same supermultiplet
and have the following anomalous dimension
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Note, that this function has the maximal transcedentality. It leads to an integrability of
evolution equations for matrix elements of quasi-partonic operators in N =4 SUSY [14].

3 Two and three loop results

Using maximal transcedentality hypothesis [13] and QCD results [15], one can calculate also
the anomalous dimensions in two and three loops [16, 17]
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Here the corresponding harmonic sums are defined below
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4 Weak and strong coupling regimes

The above results are in an agreement with the BFKL prediction [13] for the singularities
at j — 1
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Note, that recently the four-loop result 'yf;l)z (7) was calculated with the use of the asymptotic
Bethe ansatz [18]. It turned out, that the obtained expression has the singularity in j = 1
incompatible with the BFKL prediction. A simple modification of the four loop result
taking into account the wrapping effect gives an agreement with the BFKL equation and
the following non-linear equation for j +2r=w — 0 (r =0,1,2,...)
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generalizing the resummation of the double logarithmic terms ~ a/w? (cf. [19]).
Further, the universal anomalous dimension at large j
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can be found from our results up to three loops
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It is remarkable, that using the AdS/CFT correspondence [20] between the superstring
model on the anti-de-Sitter space and the N = 4 supersymmetric Yang-Mills theory A.
Polyakov with collaborators calculated the coefficient a(z) in the strong coupling limit [21]
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In Ref. [16] the resummation of the perturbative expansion of a(z) was suggested, which
reproduces approximately the three-loop result and the strong coupling limit.

The perturbative calculations of the anomalous dimension at large j are in agreement
with the recent papers [22, 23], where integral equations was derived from the integrability
of the model. One can rewrite the Eden-Staudacher integral equation [22] as a set of linear
equations [24]
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We can easiliy prove, that the maximal transcedentality property for a(z) is valid in all orders
of the perturbation theory and the coefficients in front of the products of the corresponding (-
functions are integer numbers [24]. It is possibly to show [24], that the asymptotic behaviour
of a(z) in the case of the Beisert-Eden-Staudacher equation [22] in the agreement with the
AdS/CFT prediction [21].
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Note, that the intercept of the BFKL Pomeron in the strong coupling limit was calculated
in Refs. [17] and [25]
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