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A systematic approach towards description of semi-inclusive processes at low x and
with multiple rescatterings taken into account is highlighted. We solve the problem
of inclusive multi-gluon production for arbitrary number of gluons, thus extending
previously known results for one and two gluons produced.
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Figure 1: Multi-gluon production within
BFKL

This talk is based on Refs. [1].
Within the BFKL approximation the

problem of multi-gluon production is solved
(Fig. 1) in terms of the BFKL Green func-
tion GBFKL and the effective vertex for
gluon emission L(k) with k being a momen-
tum of emitted gluon. A schematic expres-
sion for the cross section of n-gluon produc-
tion emitted at different rapidities Y1 ... Yn
and having momenta k1 ... kn reads (with
ΦP,T standing for projectile/target impact
factor)

dσ

dY1 dk2
1 . . . dYn dk

2
n

∼ ΦT GBFKLYn−Y0
L(kn) . . . GBFKLY1−Y2

L(k1) GBFKLY−Y1
ΦP

The question we ask is how to generalize this expression when one of the colliding parti-
cles, the target, is large and dense. We then have to take into account the physics of gluon
saturation, and associated non-linear evolution equations like BK-JIMWLK. The projectile‘s
gluon scattering of a dense target has the eikonal propagator given by the Wilson line

S(x) = P exp

{
i

∫
dx− T aAa

t (x, x−)

}
.

with At characterizing the target external field. We find it convenient to introduce two
targets - one for the amplitude S and another one for its conjugate S̄. In the end of our
computation we set S = S̄. The answer to our posed question has the following form

dσ

dY1 dk2
1 . . . dYn dk

2
n

∼
∫
DSDS̄W T [S] δ(S − S̄)UYn−Y0Okng . . . UY1−Y2Ok1

g UY−Y1ΣP [S, S̄]

with the evolution operator

U(Y1 − Y2) = Exp [− H3 (Y1 − Y2)]

Below we will present the Hamiltonian H3 and the gluon emission vertex Og . W T and ΣP

are generalized impact factors, which often appear in the color glass formalism.
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We first introduce the gluon production (and scattering) amplitude

Qai (z) = g

∫

x

(x− z)i
(x− z)2

[
JaL(x) − Sab(z) JbR(x)

]

The generators of the left/right color rotations are Lie derivatives

JaR(x) = − tr

{
S(x) T a

δ

δS†(x)

}
, JaL(x) = − tr

{
T a S(x)

δ

δS†(x)

}

In terms of Q the gluon emission operator which is found in Ref. [1] is

Okg [S, S̄] =

∫
d2z

2π

d2z̄

2π
ei k (z− z̄) Qai (z, [S])Qai (z̄, [S̄])

Q[S] Q[S]

α α αααα

Figure 2: The operator Og

This operator is visualized in Fig. 2 The
same operator Q enters the expression for
the Hamiltonian H3 first introduced in
Ref.[2]

H3[S, S̄] ≡
∫

z

[
Qai (z, [S]) + Qai (z, [S̄])

]2

As a first application of the above
formalism we consider a single inclu-
sive gluon production (Fig. 3).

Using our general formalism we write
the cross section

dσ

dY1 dk2
=

∫
DSDS̄ W T [S] δ(S̄ − S) UY1 Okg UY−Y1 ΣPY

This can be brought [1] to the following form [3]

dσ

dY1 dk2
=

αs
π

∫

z,z̄

ei k(z− z̄)
∫

x,y

(z − x)i
(z − x)2

(z̄ − y)i
(z̄ − y)2

GBFKL(x, y;Y − Y1) ×

× [〈Tz,y〉Y1 + 〈Tx,z̄〉Y1 − 〈Tz,z̄〉Y1 − 〈Tx,y〉Y1 ]

z z

Ο   (κ)g
Y

0

Y1

Figure 3: Single gluon production

DIS 2007346 DIS 2007



with 〈T 〉 denoting the S-matrix of a gluonic dipole:

〈Tx,y〉Y1 ≡
∫
DSW T

Y1
[S] tr[S†x Sy]

which can be deduced from solutions of the BK-JIMWLK equations. Our solution for the
multi-gluon production problem is given in terms of Feynman-like diagrammatic technique.
Fig. 4 is an example of a diagram for the one gluon case.
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Figure 4: Single gluon production:
Diagrammatic representation

We were not able to proceed with the general for-
malism beyond the one gluon case. Instead we had to
rely on the dipole approximation. In practice we intro-
duce new degrees of freedom and re-express both the
Hamiltonian H3 and the vertex Og in the new degrees.
The dipole creation operator reads (similarly s̄)

sx,y =
1

N
tr[SF (x)S†F (y)]

We also find it necessary to introduce the quadrupole
operator

qx,y,u,v =
1

N
tr[SF (x)S†F (y)SF (u)S†F (v)].

It is important to stress that no other higher multiplet
operators is needed if the projectile at rest is made only
out of dipoles. Furthermore, the quadrupoles of the mixed type arise

qss̄x,y,v,u =
1

N
tr[SF (x)S†F (y) S̄F (u) S̄†F (v)] = qx,y,v,u + tx,y,v,u

Note that we have to set S̄ = S at the end of our computation t = 0. That leads us to a
perturbation theory in t.

Re-express the Hamiltonian H3 in new degrees of freedom we find four terms:

H3 = Hs + Hq + Ht + Vt→tt

Hs is the dipole Hamiltonian which generates the BK eq. for the dipole s:

∂y s(x, y) = KBFKL ⊗ (s − s s)

Hq generates a linear evolution of q (similar to BKP) which is also coupled to the external
field s:

∂y q(x, y, u, v) = K1 ⊗ q + K2 ⊗ q s + K3 ⊗ s s

The explicit expressions for the kernels K can be found in [1]. Ht generates a linear evolution
of t which is also coupled to s:

∂y t(x, y, u, v) = G−1[s] ⊗ t + λ ⊗ t t

Here G is a propagator in the external Pomeron field s.When x = v and y = u, the two-
point function G coincides with GBFKL. The propagator G and triple t vertex λ are in
the basic of our perturbation theory. They define the relevant Feynman rules (Fig. 5).
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Figure 5: The propagator and vertex

Finally we have to re-express
the insertion operator Qg in terms
of the new degrees of freedom.
We find that Og splits into three
groups of vertecies (Fig. 6):

Og(k) = A−1(k) + A0(k) + A1(k)

t  −> ss

s s q

k k

q

k k

qq

k k

t  −> ts

s

k

q

t  −> tq

k

t  −> tt

k

s

k

t  −> t(sq)

{sq} {sq}

λ t  −> {sq}
g(k)

λ λ λ
g(k) g(k)

t  −> sq

g(k) g(k)
t  −> tλ λ λ λ

g(k) g(k)

λ

λ t  −> qq

g(k)g(k)

t  −> q

tt ttt{sq}t

g(k)

Figure 6: The gluon emission vertices in the dipole approx-
imation
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Figure 7: Double-gluon production

The first group reduces
the number of t‘s by one; the
second group leaves the num-
ber unchanged, the last group
increases the number of t‘s by
one. Remember that t is set
to zero at the end. So any di-
agram which has an external
line propagating t is zero. Fig.
7 presents an example of our
diagram technique as applied
to double gluon emission. Our
expressions reproduce the re-
sult of Ref. [4].
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