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Di-hadron Fragmentation Functions describe the probability that a quark hadronizes
into two hadrons plus anything else, i.e. the process q → h1 h2 X. Via a suitable single-
spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS), they can be used to
extract the quark transversity distribution h1 in the nucleon, a missing cornerstone of
the nucleon partonic spin structure. I will discuss their evolution equations when they
are explicitly depending on the invariant mass of the two hadrons. The equations are
necessary to connect two-particle-inclusive measurements at different energies.

1 Introduction

Figure 1: The quark-quark correla-
tor for fragmentation in two hadrons.

Di-hadron Fragmentation Functions (DiFF) have
been introduced for the first time in the context of
e+e− → h1h2X reaction [2], and later have been rec-
ognized to be necessary in order to guarantee fac-
torization of all collinear singularities [3]. However,
in all these studies DiFF were always considered as
functions only of the energy fractions z1 and z2 de-
livered to the two hadrons, while most of the exper-
imental information consists of their invariant mass
distribution Mh. Also the twist analysis of the quark-
quark correlator for two-hadron inclusive production
(see Fig. 1) indicates that the extracted DiFF are in
general functions also of the pair relative momentum
R = P1−P2 [4], whose transverse spatial component
RT is related to Mh [5]. In this case, I will refer to the socalled extended DiFF (extDiFF).

Figure 2: The nonperturbative effect sT ·P1 ×P2

generating the single-spin asymmetry.

ExtDiFF can act as spin analyzers
of the fragmenting quark; in particu-
lar the transverse polarization sT of the
latter can be related to the azimuthal
orientation of the plane containing P1

and P2 via the mixed product sT ·P1×
P2 (see Fig. 2). The strength of this
effect is described by the extDiFF H<)

1 .
In SIDIS on transversely polarized tar-
gets, this function appears in combina-
tion with the transversity function, a
leading-twist partonic distribution yet undetermined. The unknown extDiFF can be ex-
tracted from e+e− annihilations in two hadron pairs [6].

The HERMES and COMPASS collaborations have recently reported preliminary mea-
surements of the asymmetry induced by the sT ·P1×P2 effect at the average scale 〈Q2〉 = 2.53
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GeV2 [7, 8]. The BELLE collaboration is planning to extract H<)
1 in e+e− annihilation but

at the higher scale s ≈ 100 GeV2 [9]. In this talk I will discuss the evolution equations for
extDiFF.

2 Evolution equations for DiFF

As already anticipated in Sec. 1, DiFF are necessary to get a finite cross section for the
e+e− → h1h2X process at NLO order [3]. The reason relies in the indistinguishability of
the two mechanisms depicted in Fig. 3, which both lead to the observed hadron pair, either
through DiFF or through separate single-hadron fragmentations after a partonic branching
occurring at an arbitrary scale, intermediate between the hard Q2 one and the soft Q2

0 one.
The consequence is the appearance of an inhomogenous term in the evolution equations for
DiFF [3].
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Figure 3: Double- and single-hadron fragmentations; the momentum fractions are indicated
along with the scales and the parton indices; the black dots represent the parton evolution
function E (see text).

Making use of the techniques of jet calculus [2], the result of Ref. [3] can be easily
reproduced when the two hadrons are emitted close in phase space (i.e., inside the same
jet) and wide-angle hard partons are neglected. The phase-space structure of collinear
singularities singled out in the fixed-order calculation of Ref. [3] can be translated in jet
calculus as a degeneracy in all possible competing mechanisms that could realize the desired
final state.

It is convenient to introduce the evolution variable

y =
1

2πβ
ln

[
αs(Q

2
0)

αs(Q2)

]
, (1)

between some two arbitrary hard Q2 and soft Q2
0 scales. If working at Leading Log Ap-

proximation (LLA), αs and β are the usual strong coupling constant and β function, both
at one loop. We can introduce also the parton evolution function E ij(x, y), which expresses

the probability of finding a parton j at scale Q2
0 with a momentum fraction x of the parent

parton i at scale Q2. It satisfies standard DGLAP evolution equations [2] and can be shown
to resum all collinear leading logarithms of the kind αns lnn(Q2/Q2

0) [10]. The evolution
variable Y corresponding to the initial hard scale Q2 is not zero, as one could deduce from
Eq. 1, but can be defined by replacing Q2

0 with the renormalization scale µ2
R in Eq. 1 itself.
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In this picture, the fragmentation process of Fig. 3 is described by

1
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where P̂ are the usual real Altarelli-Parisi splitting functions, Di→h are single-hadron frag-
mentation functions, and Di→h1h2 are DiFF. Taking the derivative d/dY of Eq. 2, and
further transforming the dependence upon Y back to the one on Q2, it easy to recover the
inhomogeneous evolution equation for Di→h1h2 in the jet calculus language [10].

3 Evolution equations for extDiFF

The difference between extDiFF and DiFF is the explicit dependence of the former upon
the transverse component of the hadron pair relative momentum, RT , or, equivalently, upon
their invariant mass Mh through the relation [5, 10]

R2
T =

z1z2

z1 + z2

[
M2
h

z1 + z2
− M2

1

z1
− M2

2

z2

]
. (3)

Knowledge of the R2
T scale makes the scale of the partonic branching no longer arbitrary.

In fact, at LLA the virtualities of the involved partons are related by [10]

k2
j =

k2
k

u
+

k2
l

1− u +
r2
T

u(1− u)
≈ r2

T ≈ R2
T , (4)

where r2
T is the relative momentum of the partons k and l carrying momentum fractions u

and 1− u of the parent parton j, respectively.
Consequently, the arbitrary intermediate scale y appearing in the second term of Eq. 2

collapses to yT , defined similarly to Y but with the replacement Q2 ↔ R2
T . The analogue

of Eq. 2 for extDiFF becomes, therefore,
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Taking the derivative d/dY of the previous expression, and further transforming back to the
usual Q2, we finally get [10]

d

dlnQ2
Di→h1h2(z1, z2, R

2
T , Q

2) =
αs(Q

2)

2π

∫ 1
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u
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Pji(u) , (6)
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where Pji are the complete Altarelli-Parisi splitting functions, including the virtual contri-
butions.

The same result holds also for the polarized fragmentation function H<)
1 , provided that

the splitting kernels δP for transversely polarized partons are used [10]. Equation 6 can also
be conveniently diagonalized using a double Mellin transformation [10].

On the basis of Eq. 6, we argue that the cross section at NLO order for the inclusive
production of two hadrons h1 and h2, inside the same jet and with invariant mass Mh, can
be expressed in the factorized form

dσh1h2

dz1dz2dR2
T dQ

2
=
∑

i

σi ⊗Di→h1h2(R2
T , Q

2) , (7)

where σi are the same coefficient functions found in the case of single-hadron inclusive
production.
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