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A systematic approach towards description of semi-inclusive processes at low z and
with multiple rescatterings taken into account is highlighted. We discuss diffractive
processes and their evolution with respect to relevant rapidity intervals.

This talk is based on Ref. [2].

e We develop a general formalism to address semi-inclusive processes at high energies
and including multiple rescatterings. Part of formalism is independent of underlying high
energy evolution. However, most of applications considered are within DIS framework and
assume BK-JIMWLK evolution.
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Figure 1: Diffraction and fan diagrams

e We apply our general formalism to High energy diffractive processes. We attempt to
derive results not relying on the dipole (large N, and target factorization) approximation.
We reproduce and extend the result of Ref. [3] for the process of projectile diffraction
with target scattered elastically. We also obtain results for projectile diffraction with target
diffracting in a small rapidity interval and elastic scattering.

e We consider high energy diffraction with multiple gaps. For various diffractive processes
we derive evolution equations with respect to total rapidity and gap(s).
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Figure 2: Various types of diffractive processes
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Let me flash the formalism which is based on the evolution of hadronic wavefunction.
Hadron wave function in the gluon Fock space is

[¥) = W[af"(2)]|0) 2) = o)
After rapidity evolution the evolved wave function becomes
Win) = Qv (p, a)|v); [v) = [v) ® [0a)

Here Q is the most general evolution kernel. It is known for arbitrary dense hadron [4]. We
will however concentrate on the most simple case of dilute hadron. In this limit, 2 reduces
to the gluon cloud operator

: 2, 1a oA dk* a1+ fa .+
CY = Qy(p—) 0) :EXp ’L/d ZbZ(Z)/A W[al(lﬂ ,Z) +a’i (k ,Z)):| .

with the classical WW field
1) = £ [l

2 (z —x)?

The projectile‘s gluon scattering of a dense target has the eikonal propagator given by
the Wilson line

S(z) = P exp{i/d:c_ TaAg(x,x—)} .

with A; characterizing the target external field. The evolution of the diagonal element of
the S-matrix operator X = (U,,4|¥;,,) reads

GYEP _ _HJIMWLKEP. HJIMWLK — / Qq(z) Qq(z)
) 1 1
z
where we introduced the gluon production (and scattering) amplitude

@) =g | @22 1) — 5oz Jh(2)]

(- 2)
The generators of the left /right color rotations are Lie derivatives
J(x) tr < S(x) T d Ji(x) tr « T S(x) i
= — Tr _— = — Tr _—
B\P Y S8t [ L ¥ 55t ()

This operator is visualized in Fig. 3.

Now we turn to discussion of semi-inclusive reactions. The system emerges from the
collision at ¢ = 0 and keeps evolving to the asymptotic time t — 400, at which point the
measurement of an observable O is made

(©) = (v]Q} (1 - §Hy O Q) (1 §)Qy )

We find it convenient to introduce two targets - one for the amplitude S and another one
for its conjugate S. In the end of our computation we set S = S.

Oy[S.5] = (Pl (1 — SHay 0 al 1 - 9y |P,)
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Figure 3: The operator @

High energy evolution of the observable is given by the following equation

dOv[S.5] . Oyiay[S.8] — Ov[S.5] i} _
v = Amg Ay = — H3[S, 5] Oy|[S, 5]

Here the Hamiltonian Hs (first introduced in [5])
(5.5 = 18] + H(S] + 2 [ Q2. [5) @12 15)

Hi[S] = HITMWLK[g / Q2 (2, 1S]) Q%= [S]) Hy[S. 5] = Hy[S] + H1[]

is illustrated in Fig. 4. The Hamiltonian Hs appears in diffractive processes and is respon-
sible for evolution through a rapidity gap. The Hamiltonian Hs is presumably the answer
to properly formulated question of generalization of AGK cutting rules to QCD.
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Figure 4: The Hamiltonian Hs

Having introduced the Hamiltonians we can introduce associated evolution operators:
Uy, _y, = Bap[— H3 (Y1 — Ya)] Uf, vy, = Eap[— Hz (Y1 - Y2)]

Thus a formal solution for inclusive diffraction with multiple gaps and multiple rescatterings
(Fig. 5)

ot f ~ / DSDSWHS] 6(S =8 Uy _y, Us _y. - U _y, Uy _y, Z°[S, 5]
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This expression is quite com-
plex and of little use. Things be-
come less formal and more useful
when passing to the dipole degrees
of freedom

ey = 5 r1SP(2) SE)

We need to remember, however,
that the factorization

(s(z,y) s(u, 0))r = (s(z, y))r (s(u,0))r

is not always valid. This is very
important in order to include tar-
get diffractive states.

For processes involving trans-

verse momentum transfer,a quadrupole

operator is also in need

Gene = IS (@) Shy) Sr(w) Sh(v)]

Fortunately, no other higher mul-
tiplet operators emerge, if the pro-
jectile at rest is made only out of
dipoles.
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Figure 5: Diffraction with multiple gaps

Everything which is reported above has been done in collaboration with Alex Kovner. Many
thanks to Alex for making hard work into a joy.
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