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I review recent progress in understanding radiative transitions in heavy quarkonium,
both on and off the lattice, and discuss our recent leptonic width matching calculation.

1 Introduction

In my conference talk (available at [1]), I reviewed papers of Dudek, Edwards and Richards
[2, 3], of Lansberg and Pham [4], of Gao, Zhang and Chao [5] and of Oliveira and Coimbra [6].
As these are discussed elsewhere in these proceedings, I here concentrate on our calculation
of the leptonic widths of heavy quarkonia [7].

Leptonic widths of heavy quarkonia such as the Υ or the J/ψ are an important test of
electroweak Standard Model in the heavy quark sector: heavy particles should be sensitive to
possible new physics at or above the electroweak scale. Leptonic decays have experimentally
clean signatures. Moreover, ratios of leptonic widths can be measured to good accuracy both
experimentally and on the lattice, providing a high precision test of lattice techniques.

Here we address how to improve the precision of current lattice predictions [8] to match
that of experimental results [9]:
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2
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{
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0.48 (5) Lattice.

2 Matching S-wave decays between NRQCD and QCD

The leptonic width of a heavy quarkonium Q̄Q state of mass MQ̄Q is given by
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with nonperturbative QCD contributions coming from the matrix element
〈
0
∣∣JQCD

∣∣ Q̄Q
〉
.

Unfortunately, it is not possible to simulate heavy b quarks directly on a lattice (with
spacing typically a ' 0.1 fm) due to their short Compton wavelengths. We must use an
effective theory, such as NRQCD, and calculate the desired QCD matrix element from a set
of NRQCD matrix elements which can be measured on the lattice:
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In this paper we determine the matching coefficients ai for S-wave decays, with NRQCD

currents JNRQCDi = σ
(

∆2

M2

)i
(which vary as v2i with the heavy quark velocity at tree level).

Discretisation removes high momentum modes, so it is reasonable to expect that we can
compute the matching coefficients perturbatively, by expanding both the coefficients and
the matrix elements and matching order by order in αs:

ai =
∑

n

αns a
(n)
i

〈
0 |J| Q̄Q

〉
=
∑

n

αns
〈
0 |J| Q̄Q

〉(n)

We calculate a
(0)
0,1,2 and a

(1)
0,1, giving an accuracy of O(αs, αsv

2, v4). In the Υ system, v2 ∼
αs ∼ 10% suggesting that to achieve ∼ 1% accuracy, we would need to go to O(α2

s , αsv
2, v4),

hence requiring two-loop a
(2)
0 . In matrix element ratios, however, we need only b1,2 = a1,2/a0

and such terms cancel. Our calculation thus give ∼ 1% accuracy on the ratio.
We work in the Breit frame, where the decaying meson is stationary and the quark has

momentum pµ = (iE, 0, 0,Mv), use v as the non-relativistic expansion parameter (exact at
the order to which we are working) and treat the quarks as being on-shell (which can also
be shown to be justified). Our gauge and fermion actions are chosen to be the same as are
used in current lattice simulations. The improved NRQCD action is

SNRQCD =
∑

x,t

ψ†ψ − ψ†
(

1− aδH

2

)(
1− aH0

2n

)n
U †4

(
1− aH0

2n

)n(
1− aδH

2

)
ψ .

where n is a stability parameter for the euclidean-space Schrödinger equation, which must
satisfy n ≥ 3/(Ma) for numerical stability. For the gauge fields, we use a Symanzik improved
action with tadpole improved links.

The Feynman rules for such actions are extremely complicated, with 8000 terms in the
QQ̄g vertex and 70000 for the O(a) QQ̄gg. For this reason, we have developed HiPPy, a
flexible, automated tool for generating Feynman rules from lattice actions [10]. It incorpo-
rates automatic differentiation techniques [11] to calculate the derivatives of the complicated
Feynman diagrams. Freely available, HiPPy has also been used in a number of recent cal-
culations [12, 13, 14].

2.1 Matching at tree level

At tree-level, the relevant matrix elements are given by

〈
0
∣∣JQCD

∣∣ Q̄Q
〉(0)

= v̄(−p)γu(p) = χ†σ

(
2

3
+
M

3E

)
ψ

〈
0
∣∣∣JNRQCDi

∣∣∣ Q̄Q
〉(0)

= gi(v)χ†σψ

where

g0(v) = 1 , g1(v) = − 4

(Ma)2
sin2

(
aMv

2

)
= v2 +O(v4)

g2(v) =
4

(Ma)2

[
4 sin2

(
aMv

2

)
− sin2(aMv)

]
= v4 +O(v6)
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Figure 1: Left: numerical results with fits for a
(1)
0,1); right: results in different gauges vs. the

infrared gluon mass, showing gauge and gluon mass independence.

Expanding these matrix elements in powers of v2, we determine a
(0)
i to match:

a
(0)
0 = 1 , a

(0)
1 =

1

6
, a

(0)
2 =

1

8
− (aM)2

72
.

2.2 Matching to one-loop order

Expanding the matching condition to first order in αs gives

∑

i

a
(1)
i︸︷︷︸

wanted
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0
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0
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Both the QCD and the NRQCD matrix elements on the right-hand side contain odd powers
of v coming from the Coulomb-exchange singularity; however, only even powers of v are
available for matching on the left-hand side, so the odd powers must cancel exactly.

In fact, the odd powers of v are a purely infrared phenomenon, and are known exactly:

Iodd =
h(v)

12v
= −=

{
4

3

∫
d4k

(2π)4

h(v)

(k2 + µ2)(ik0 − k2+2k·p
2M )(ik0 + k2+2k·p

2M )

}

where h(v) is a known even function of v. We can hence analytically subtract the odd powers
from both QCD and NRQCD by rearranging the right-hand side as

IQCD − INRQCD = (IQCD − Iodd)− (INRQCD − Iin) + Iout

where we have split Iodd = Iin + Iout, inside and outside the Brillouin zone. The term
(IQCD − Iodd) is known analytically, while the other terms are calculated numerically using
farmed VEGAS on the CCHPCF SunFire Galaxy class computer. We find the matching

coefficients by fitting results for various v with (IQCD − INRQCD)(v) = a
(1)
0 − a

(1)
1 g1(v).
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M0a n a1
0 a1

1 b11 b02
4.0 2 -0.1288(27) -3.32(29) -3.30(30) -0.0972
2.8 2 -0.1732(21) -1.35(22) -1.32(22) 0.0161
1.95 2 -0.1358(16) 0.26(17) 0.14(17) 0.0722
1.0 4 0.4056(20) -0.50(17) -0.56(17) 0.1111

Table 1: The matching coefficients, as a function of the bare heavy quark mass. Note that

a
(0)
0 = 1, a

(0)
1 = b

(0)
1 = 1

6 , and that there is no subtraction to prevent mixing down.

3 Results and conclusions

We have calculated matching coefficients at a number of quark masses corresponding to the
bottom and charm quarks on the MILC improved staggered ensembles. We have performed
extensive tests of gauge invariance, infrared regulator independence, and agreement with

known results for a
(1)
0 at v = 0 for simpler NRQCD actions. Our results are shown in Fig. 1,

as well as a plot showing the gauge and regulator independence of our results. Our final
results for the matching coefficients are given in Table 1, and are currently being combined
with lattice NRQCD matrix elements to predict the leptonic widths.
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