# Exclusive Hadronic Final States in $e^{+} e^{-}$Interactions at BABAR 

Sepehr Saremi ${ }^{1}$<br>1- University of Massachusetts at Amherst - Dept of Physics<br>Amherst, Massachusetts - USA

The first observation of $e^{+} e^{-}$annihilation into states of positive $C$ parity, $\rho^{0} \rho^{0}$ and $\phi \rho^{0}$ is reported. It is shown that these final states are produced through two-virtual-photon annihilation. This is based on the distributions of $\cos \theta^{*}$, where $\theta^{*}$ is the center-of-mass polar angle of $\phi$ or $\rho^{0}$. The cross sections for the $\left|\cos \theta^{*}\right|<0.8$ are measured. In addition, the observation of another channel, $e^{+} e^{-} \rightarrow \phi \eta$ near $\sqrt{s}=10.58 \mathrm{GeV}$ with a significance of $6.5 \sigma$ is discussed. The cross section of the later channel for $\left|\cos \theta^{*}\right|<0.8$ is measured, where $\theta^{*}$ is the center-of-mass polar angle of $\phi$ meson.

## 1 Observation of $e^{+} e^{-}$annihilation into states of positive $C$ parity, $\rho^{0} \rho^{0}$ and $\phi \rho^{0}$

The BABAR experiment has measured some rare, low multiplicity final states that have $\mathrm{C}=+1$. These final states are produced through a two-virtual-photon annihilation (TVPA) process which is shown in Figure 1.

The channels measured by the BABAR experiment [2] are the exclusive reactions $e^{+} e^{-} \rightarrow \rho^{0} \rho^{0}$ and $e^{+} e^{-} \rightarrow \phi \rho^{0}$. The final state in both these channels is even under charge conjugation and cannot be produced by single-photon annihilation. The data sample used in this analysis consists of $205 \mathrm{fb}^{-1}$ of data collected on the $\Upsilon(4 S)$ resonance and $20 \mathrm{fb}^{-1}$ collected 40 MeV below.

The event selection requires four wellreconstructed charged tracks with a total charge of zero. Two oppositely charged


Figure 1: Two-virtual-photon annihilation diagram. tracks must be identified as pions and the other two must be both pions or kaons.

The four tracks are fitted to a common vertex and we require the $\chi^{2}$ probability to exceed $0.1 \%$. We select events that have a reconstructed invariant mass within $170 \mathrm{MeV} / \mathrm{c}$ of the nominal c.m. energy as shown in Figure 2.

The analysis is performed using a binned maximum-likelihood fit. The fit is performed in nine rectangular regions of the two-dimensional mass distributions. The signal region is considered to be the $0.5<m_{\pi^{+} \pi^{-}}<1.1 \mathrm{GeV} / \mathrm{c}^{2}$ and $1.008<m_{K^{+} K^{-}}<1.035 \mathrm{GeV} / \mathrm{c}^{2}$ mass regions.

The number of signal events for the $\rho^{0} \rho^{0}$ and $\phi \rho^{0}$ channels are $1243 \pm 43$ and $147 \pm 13$ respectively with a $\chi^{2}$ /dof (degrees of freedom) of $6.4 / 4$ and $2.0 / 3$. There are a total of $1508 \pi^{+} \pi^{-} \pi^{+} \pi^{-}$( $\sim 18 \%$ background) and $163 K^{+} K^{-} \pi^{+} \pi^{-}(\sim 10 \%$ background) events in the signal box, respectively.


Figure 2: The invariant mass for the (a) $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$and (b) $K^{+} K^{-} \pi^{+} \pi^{-}$final states. The dashed lines show the signal regions.


Figure 3: Distributions of the production angle for a) $\rho^{0} \rho^{0}$ and b) $\phi \rho^{0}$. The solid and dashed lines are the normalized $\frac{1+\cos ^{2} \theta^{*}}{1-\cos ^{2} \theta^{*}}$ and $1+\cos ^{2} \theta^{*}$ distributions, respectively.

One can study the production mechanism by using the production angle $\theta^{*}$, which is defined as the angle between the $\rho^{0}(\phi)$ direction and the $e^{-}$beam direction in the CM frame. Figure 3 shows the $\left|\cos \theta^{*}\right|$ distributions after MC efficiency correction. The measurements are restricted to the fiducial region $\left|\cos \theta^{*}\right|<0.8$, since the efficiency drops rapidly beyond 0.8 . These forward peaking $\cos \theta^{*}$ distributions are consistent with the TVPA expectation [3], which can be approximated by:

$$
\frac{d \sigma}{d \cos \theta^{*}} \propto \frac{1+\cos ^{2} \theta^{*}}{1-\cos ^{2} \theta^{*}}
$$

in the fiducial region. The fit for TVPA hypothesis gives a $\chi^{2} /$ dof of $11.8 / 7\left(\rho^{0} \rho^{0}\right)$ and $3.5 / 3\left(\phi \rho^{0}\right)$. However, fitting by $1+\cos ^{2} \theta^{*}$, will give a $\chi^{2} /$ dof of $112 / 7$ for $\rho^{0} \rho^{0}$ and $6.3 / 3$ for $\phi \rho^{0}$ respectively.

For calculating the cross section we take the branching fraction of $\phi \rightarrow K^{+} K^{-}$to be $49.1 \%$ and that of $\rho^{0} \rightarrow \pi^{+} \pi^{-}$as $100 \%$ [4]. The TVPA cross sections within $\left|\cos \theta^{*}\right|<0.8$ near $\sqrt{s}=10.58 \mathrm{GeV}$ are:

$$
\begin{aligned}
\sigma_{\mathrm{fid}}\left(e^{+} e^{-} \rightarrow \rho^{0} \rho^{0}\right) & =20.7 \pm 0.7(\text { stat }) \pm 2.7(\text { syst }) \mathrm{fb} \\
\sigma_{\mathrm{fid}}\left(e^{+} e^{-} \rightarrow \phi \rho^{0}\right) & =5.7 \pm 0.5(\text { stat }) \pm 0.8(\text { syst }) \mathrm{fb}
\end{aligned}
$$

These measured cross sections are in good agreement with the calculation from a vectordominance two-photon exchange model [3].

## 2 Observation of the $e^{+} e^{-} \rightarrow \phi \eta$ reaction at $\sqrt{s}=10.58 \mathrm{GeV}$

The most likely mechanism for the $e^{+} e^{-} \rightarrow \phi \eta$ reaction is the Feynman diagram in Figure 4. Different QCD-based models predict different $s$ dependences for the production rates of $e^{+} e^{-}$ annihilations to vector-pseudoscalar (VP) final states like $\phi \eta$. The CLEO experiment has measured the cross section for $e^{+} e^{-} \rightarrow \phi \eta$ at $\sqrt{s}=3.67 \mathrm{GeV}$ [5]. Our measurement at $\sqrt{s}=10.58 \mathrm{GeV}[6]$ provides a meaningful test of the $s$ dependence.

Our analysis uses $204 \mathrm{fb}^{-1}$ of data collected on the $\Upsilon(4 \mathrm{~S})$ resonance at $\sqrt{s}=$ 10.58 GeV and $20 \mathrm{fb}^{-1}$ collected 40 MeV below the $\Upsilon(4 \mathrm{~S})$ mass. To $\phi \eta$ final state is reconstructed in the $K^{+} K^{-} \gamma \gamma$ mode, by selecting two well-reconstructed oppositely charged tracks and at least two wellidentified photons.

The two tracks are fitted to a common vertex with a requirement on the $\chi^{2}$ probability to exceed $0.1 \%$. The photon candidates are required to have a minimum en-


Figure 4: Two-virtual-photon annihilation diagram. ergy of 500 MeV in the laboratory frame. We accept events with a reconstructed invariant mass of $K^{+} K^{-} \gamma \gamma$ within $230 \mathrm{MeV} / \mathrm{c}^{2}$ of the $e^{+} e^{-}$CM energy. In addition we require the invariant mass of $K^{+} K^{-}$to be close to the $\phi$ mass $\left(m_{K K}<1.1 \mathrm{GeV} / \mathrm{c}^{2}\right)$ and that of $\gamma \gamma$ to be near the $\eta$ mass $\left(0.4<m_{\gamma \gamma}<0.8\right.$ $\left.\mathrm{GeV} / \mathrm{c}^{2}\right)$.

The number of signal events are derived using a two-dimensional log-likelihood fit. The number of $\phi \eta$ signal events is $24 \pm 5$ in the $\phi$ mass window, where the $\phi$ mass window is defined as $1.008<m_{K K}<1.035 \mathrm{GeV} / \mathrm{c}^{2}$. This corresponds to a significance of 6.5 standard deviations. The significance is estimated by using the log-likelihood difference between signal and null hypotheses (no $\phi \eta$ signal component), $\sqrt{2 \ln \left(L_{s} / L_{n}\right)}$, where $L_{s}$ and $L_{n}$ refer to the likelihoods of the signal and null hypotheses respectively.

The cross section is calculated by taking the branching fraction of $\phi \rightarrow K^{+} K^{-}$to be $49.1 \%$ and that of $\eta \rightarrow \gamma \gamma$ equal to $39.4 \%$ [4]. The cross section within $\left|\cos \theta^{*}\right|<0.8$ near $\sqrt{s}=10.58 \mathrm{GeV}$ is:

$$
\sigma_{\mathrm{fid}}\left(e^{+} e^{-} \rightarrow \phi \eta\right)=2.1 \pm 0.4(\text { stat }) \pm 0.1 \text { (syst) } \mathrm{fb} .
$$

There is no direct prediction for the cross section of this process at this energy. Some QCD-based models predict the $e^{+} e^{-} \rightarrow \mathrm{VP}$ cross section to have $1 / s^{4}[7,8]$ dependence. Our result and that of CLEO, $\left(\sigma=2.1_{-1.2}^{+1.9} \pm 0.2 \mathrm{pb}\right)$ at $\sqrt{s}=3.67 \mathrm{GeV}$ (continuum) [5], favors a $1 / s^{3}$ dependence as depicted in Figure 5.


Figure 5: Extrapolations of cross sections using BABAR's measurement at $\sqrt{s}=10.58$ GeVassuming $1 / s^{3}$ (solid) or $1 / s^{4}$ (dashed) energy dependence. The bands show one standard deviation uncertainties in the extrapolations. The CLEO measurement at $\sqrt{s}=3.67$ GeV is also shown.

## References

[1] Slides:
http://indico.cern.ch/contributionDisplay.py?contribId=184\&sessionId=6\&confId=9499
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97, 112002 (2006).
[3] M. Davier, M. Peskin, and A. Snyder, hep-ph/0606155.
[4] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).
[5] G. S. Adams et al. (CLEO Collaboration), Phys. Rev. D 73, 012002 (2006).
[6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74, 111103(R) (2006).
[7] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980); S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 2848 (1981).
[8] V. Chernyak, hep-ph/9906387; V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept. 112, 173 (1984).

