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The axion photon system in an external magnetic field, when for example considered with
the 1+1 geometry of the experiments exploring axion photon mixing displays a continuous
axion-photon duality symmetry in the limit where the axion mass is neglected. The con-
servation law that follows from this symmetry is obtained. The magnetic field interaction
is seen to be equivalent to first order to the interaction of a complex charged field with
an external electric potential, where this fictitious ”electric potential” is proportional to
the external magnetic field. Generalizing the scalar QED formalism to 2+1 dimensions
makes it clear that a photon and an axion split into two components in an inhomogeneous
magnetic field.

Introduction.- The possible existence of a light pseudo scalar particle is a very interesting
possibility. For example, the axion [1, 2, 3] which was introduced in order to solve the strong
CP problem has since then also been postulated as a candidate for the dark matter. A great
number of ideas and experiments for the search this particle have been proposed [4, 5].

Here we are going to focus on a particular feature of the axion field φ: its coupling to the
photon through an interaction term of the form gφǫµναβFµνFαβ . It was recognized by Sikivie
that axion detection exploiting axion to photon conversion in a magnetic field was a possibility
[6] and afterwards, further developments were carried out in [7, 10].

We will study here properties of the axion-photon system in the presence of a strong magnetic
field. By representing axions and photons as particles and anti particles we will show also that
photons and axions split in the presence of an external magnetic field, in a way that we will
make more precise. By this we mean that from a beam of photons we will get two different
kinds of scattered components (plus the photons that do not suffer any interactions), each of
the scattered beams has also an axion component, but each of the beams is directly observable
due to its photon component and an observable process is obtained to first order in the axion
photon interaction (unlike the “light shining through a wall” phenomena).

Action and Equations of Motion.- The action principle describing the relevant light pseu-
doscalar coupling to the photon is

S =
∫
d4x

[
−1

4
FµνFµν +

1
2
∂µφ∂

µφ− 1
2
m2φ2 − g

8
φǫµναβFµνFαβ

]
. (1)

We now specialize to the case where we consider an electromagnetic field with propagation
along the y and z directions and where a strong magnetic field pointing in the x-direction is
present. This field may have an arbitrary space dependence in y and z, but it is assumed to be
time independent. In the case the magnetic field is constant, see for example [11] for general
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solutions. For the small perturbations, we consider only small quadratic terms in the action
for the axion and the electromagnetic fields, following the method of Ref. [11]. This means
that the interaction between the background field , the axion and photon fields reduces in our
current set-up to

SI = −
∫
d4x [βφEx] , (2)

where β = gB(y, z). Choosing the temporal gauge for the photon excitations and considering
only the x-polarization for the electromagnetic waves (since only this polarization couples to
the axion) we get the following 2+1 effective dimensional action (A being the x-polarization of
the photon, so that Ex = −∂tA)

S2 =
∫
dydzdt

[
1
2
∂µA∂

µA+
1
2
∂µφ∂

µφ− 1
2
m2φ2 + βφ∂tA

]
. (3)

Since we consider only A = A(t, y, z), φ = φ(t, y, z), we have avoided the integration over x.
For the same reason µ runs over t, y and z only. This leads to the equations

∂µ∂
µφ+m2φ = β∂tA and ∂µ∂

µA = −β∂tφ. (4)

As is well known, when choosing the temporal gauge the action principle cannot reproduce
the Gauss constraint (here with a charge density obtained from the axion photon coupling) and
has to be imposed as a complementary condition. However, this constraint is automatically
satisfied here just because of the type of dynamical reduction employed and does not need to
be considered anymore.

The continuous axion photon duality symmetry and the scalar QED analogy.-
Without assuming any particular y and z-dependence for β, but still insisting that it will
be static, we see that in the case m = 0, we discover a continuous axion photon duality symme-
try, since: 1) The kinetic terms of the photon and axion allow for a rotational O(2) symmetry
in the axion-photon field space, 2) the interaction term, after dropping a total time derivative,
can also be expressed in an O(2) symmetric way as follows:

SI =
1
2

∫
dydzdtβ [φ∂tA−A∂tφ] . (5)

The axion photon symmetry is (in the infinitesimal limit)

δA = ǫφ, δφ = −ǫA, (6)

where ǫ is a small number. Using Noether‘s theorem, this leads to the conserved current,
with components given by

j0 = A∂tφ− φ∂tA−
β

2
(A2 + φ2) and ji = A∂iφ− φ∂iA. (7)

Here i = y, z coordinates. Defining now the complex field ψ as ψ = 1√
2
(φ+ iA), we see that in

terms of this complex field, the axion photon density takes the form

j0 = i(ψ∗∂tψ − ψ∂tψ
∗)− βψ∗ψ. (8)
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We observe that (to first order in β) (5) represents the interaction of the magnetic field with
the ”axion photon density” 7, (9) and also that this interaction has the same form as that of
scalar QED with an external ”electric ” field to first order. In fact the magnetic field (or more
precisely β/2) appears to play the role of external electric potential that couples to the axion
photon density (7), (9) which appears then to play the role of an electric charge density. From
this analogy one can obtain without effort the scattering amplitudes, just using the known
results from the scattering of charged scalar particles under the influence of an external static
electric potential (see for example [13]).

One should notice however that the natural initial states used in a real experiment, like an
initial photon and no axion involved, is not going to have a well defined axion photon charge in
the second quantized theory (although its average value appears zero), so the S matrix has to be
presented in a different basis than that of normal QED . This is similar to the difference between
working with linear polarizations as opposed to circular polarizations in ordinary optics, except
that here we talk about polarizations in the axion photon space. In fact pure axion and pure
photon initial states correspond to symmetric and antisymmetric linear combinations of particle
and antiparticle in the analog QED language. The reason these linear combinations are not
going to be maintained in the presence on B in the analog QED language, is that the analog
external electric potential breaks the symmetry between particle and antiparticle and therefore
will not maintain in time the symmetric or antisymmetric combinations.

From the point of view of the axion-photon conversion experiments, the symmetry (6) and
its finite form, which is just a rotation in the axion-photon space, implies a corresponding
symmetry of the axion-photon conversion amplitudes, for the limit ω >> m.

In terms of the complex field, the axion photon current takes the form

jk = i(ψ∗∂kψ − ψ∂kψ
∗). (9)

The Particle Anti-Particle Representation of Axions and Photons and their Split-
ting in an External Magnetic Field.- Introducing the charge conjugation [14],

ψ → ψ∗, (10)

we see that the free part of the action is indeed invariant under (11). The A and φ fields
when acting on the free vacuum give rise to a photon and an axion respectively, but in terms of
the particles and antiparticles defined in terms of ψ, we see that a photon is an antisymmetric
combination of particle and antiparticle and an axion a symmetric combination, since

φ =
1√
2
(ψ∗ + ψ), A =

1
i
√

2
(ψ − ψ∗), (11)

so that the axion is even under charge conjugation, while the photon is odd. These two eigen-
states of charge conjugation will propagate without mixing as long as no external magnetic field
is applied. The interaction with the external magnetic field transforms under (11) as SI → −SI .
Therefore these symmetric and antisymmetric combinations, corresponding to axion and pho-
ton are not going to be maintained in the presence of B in the analog QED language, since
the ”analog external electric potential” breaks the symmetry between particle and antiparticle
and therefore will not maintain in time the symmetric or antisymmetric combinations. In fact
if the analog external electric potential is taken to be a repulsive potential for particles, it will
be an attractive potential for antiparticles, so the symmetry breaking is maximal.
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Even at the classical level these two components suffer opposite forces, so under the influence
of an inhomogeneous magnetic field both a photon or an axion will be decomposed through
scattering into their particle and antiparticle components, each of which is scattered in a dif-
ferent direction, since the analog electric force is related to the gradient of the effective electric
potential, i.e., the gradient of the magnetic field, times the U(1) charge which is opposite for
particles and antiparticles.

For this effect to have meaning, we have to work at least in a 2+1 formalism [15], the 1+1
reduction [12, 14] which allows motion only in a single spacial direction is unable to produce
such separation, since in order to separate particle and antiparticle components we need at least
two dimensions to obtain a final state with particles and antiparticles going in slightly different
directions.

This is in a way similar to the Stern Gerlach experiment in atomic physics [16], where
different spin orientations suffer a different force proportional to the gradient of the magnetic
field in the direction of the spin. Here instead of spin we have that the photon is a combination
of two states with different U(1) charge and each of these components will suffer opposite force
under the influence of the external inhomogeneous magnetic field. Notice also that since particle
and antiparticles are distinguishable, there are no interference effect between the two processes.

Therefore an original beam of photons will be decomposed through scattering into two differ-
ent elementary particle and antiparticle components plus the photons that have not undergone
scattering. These two beams are observable, since they have both photon components, so the
observable consequence of the axion photon coupling will be the splitting by a magnetic field
of a photon beam.
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