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The recent detection of blazar 3C279 by MAGIC has confirmed previous indications by
H.E.S.S. that the Universe is more transparent to very-high-energy gamma rays than pre-
viously thought. We show that this fact can be reconciled with standard blazar emission
models provided photon oscillations into a very light Axion-Like Particle occur in ex-
tragalactic magnetic fields. A quantitative estimate of this effect explains the observed
spectrum of 3C279. Our prediction can be tested in the near future by the satellite-borne
GLAST detector as well as by the ground-based Imaging Atmospheric Cherenkov Tele-
scopes H.E.S.S., MAGIC, CANGAROO III, VERITAS and by the Extensive Air Shower
arrays ARGO-YBJ and MILAGRO.

1 Introduction

As is well known, in the very-high-energy (VHE) band above 100 GeV the horizon of the
observable Universe rapidly shrinks as the energy further increases. This comes about because
photons from distant sources scatter off background photons permeating the Universe, thereby
disappearing into electron-positron pairs [1]. The corresponding cross section σ(γγ → e+e−)
peaks where the VHE photon energy E and the background photon energy ǫ are related by ǫ ≃
(500 GeV/E) eV. Therefore, for observations performed by Imaging Atmospheric Cherenkov
Telescopes (IACTs) – which probe the energy interval 100 GeV−100 TeV – the resulting cosmic
opacity is dominated by the interaction with ultraviolet/optical/infrared diffuse background
photons (frequency band 1.2 · 103 GHz− 1.2 · 106 GHz, corresponding to the wavelength range
0.25 µm−250 µm), usually called Extragalactic Background Light (EBL), which is produced by
galaxies during the whole history of the Universe. Neglecting evolutionary effects for simplicity,
photon propagation is controlled by the photon mean free path λγ(E) for γγ → e+e−, and so
the observed photon spectrum Φobs(E, D) is related to the emitted one Φem(E) by

Φobs(E, D) = e−D/λγ(E) Φem(E) . (1)

Within the energy range in question, λγ(E) decreases like a power law from the Hubble
radius 4.2 Gpc around 100 GeV to 1 Mpc around 100 TeV [2]. Thus, Eq. (1) entails that the
observed flux is exponentially suppressed both at high energy and at large distances, so that suf-
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ficiently far-away sources become hardly visible in the VHE range and their observed spectrum
should anyway be much steeper than the emitted one.

Yet, observations have not detected the behavior predicted by Eq. (1). A first indication
in this direction was reported by the H.E.S.S. collaboration in connection with the discovery
of the two blazars H2356-309 (z = 0.165) and 1ES1101-232 (z = 0.186) at E ∼ 1 TeV [3].
Stronger evidence comes from the observation of blazar 3C279 (z = 0.536) at E ∼ 0.5 TeV by
the MAGIC collaboration [4]. In particular, the signal from 3C279 collected by MAGIC in the
region E < 220 GeV has more or less the same statistical significance as the one in the range
220 GeV < E < 600 GeV (6.1σ in the former case, 5.1σ in the latter).

A suggested way out of this difficulty relies upon the modification of the standard Synchro-
Self-Compton (SSC) emission mechanism. One option invokes strong relativistic shocks [5].
Another rests upon photon absorption inside the blazar [6]. While successful at substantially
hardening the emission spectrum, these attempts fail to explain why only for the most distant
blazars does such a drastic departure from the SSC emission spectrum show up.

Our proposal – usually referred to as the DARMA scenario – is quite different [7]. Implicit in
previous considerations is the hypothesis that photons propagate in the standard way through-
out cosmological distances. We suppose instead that photons can oscillate into a new very light
spin-zero particle – named Axion-Like Parlicle (ALP) – and vice-versa in the presence of cosmic
magnetic fields, whose existence has definitely been proved by AUGER observations [8]. Once
ALPs are produced close enough to the source, they travel unimpeded throughout the Universe
and can convert back to photons before reaching the Earth. Since ALPs do not undergo EBL
absorption, the effective photon mean free path λγ,eff(E) gets increased so that the observed
photons cross a distance in excess of λγ(E). Correspondingly, Eq. (1) becomes

Φobs(E, D) = e−D/λγ,eff (E) Φem(E) , (2)

from which we see that even a slight increase of λγ,eff(E) gives rise to a huge enhancement of
the observed flux. It turns out that the DARMA mechanism makes λγ,eff(E) shallower than
λγ(E) although it remains a decreasing function of E. So, the resulting observed spectrum is
much harder than the one predicted by Eq. (1), thereby ensuring agreement with observations
even for a standard SSC emission spectrum. As a bonus, we get a natural explanation for the
fact that only the most distant blazars would demand Φem(E) to substantially depart from the
emission spectrum predicted by the SSC mechanism.

Our aim is to review the main features of our proposal as well as its application to blazar
3C279.

2 DARMA scenario

Phenomenological as well as conceptual arguments lead to view the Standard Model of particle
physics as the low-energy manifestation of some more fundamental and richer theory of all
elementary-particle interactions including gravity. Therefore, the lagrangian of the Standard
Model is expected to be modified by small terms describing interactions among known and new
particles. Many extensions of the Standard Model which have attracted considerable interest
over the last few years indeed predict the existence of ALPs. They are spin-zero light bosons
defined by the low-energy effective lagrangian

LALP =
1
2

∂µ a ∂µ a− 1
2

m2 a2 − 1
4M

Fµν F̃µν a , (3)

2

MARCO RONCADELLI

54 PATRAS08



where Fµν is the electromagnetic field strength, F̃µν is its dual, a denotes the ALP field whereas
m stands for the ALP mass. According to the above view, it is assumed M ≫ G

−1/2
F ≃ 250 GeV.

On the other hand, it is supposed that m ≪ G
−1/2
F ≃ 250 GeV. The standard Axion [9] is the

most well known example of ALP. As far as generic ALPs are concerned, the parameters M
and m are to be regarded as independent.

So, what really characterizes ALPs is the trilinear γ-γ-a vertex described by the last term
in LALP, whereby one ALP couples to two photons. Owing to this vertex, ALPs can be emit-
ted by astronomical objects of various kinds, and the present situation can be summarized as
follows. The negative result of the CAST experiment designed to detect ALPs emitted by the
Sun yields the bound M > 0.86 · 1010 GeV for m < 0.02 eV [10]. Moreover, theoretical consid-
erations concerning star cooling via ALP emission provide the generic bound M > 1010 GeV,
which for m < 10−10 eV gets replaced by the stronger one M > 1011 GeV even if with a large
uncertainty [11]. The same γ-γ-a vertex produces an off-diagonal element in the mass matrix
for the photon-ALP system in the presence of an external magnetic field B. Therefore, the in-
teraction eigenstates differ from the propagation eigenstates and photon-ALP oscillations show
up [12].

We imagine that a sizeable fraction of photons emitted by a blazar soon convert into ALPs.
They propagate unaffected by the EBL and we suppose that before reaching the Earth a sub-
stantial fraction of ALPs is back converted into photons. We further assume that this photon-
ALP oscillation process is triggered by cosmic magnetic fields (CMFs), whose existence has
been demonstrated very recently by AUGER observations [8]. Owing to the notorious lack
of information about their morphology, one usually supposes that CMFs have a domain-like
structure [13]. That is, B ought to be constant over a domain of size Ldom equal to its coher-
ence length, with B randomly changing its direction from one domain to another but keeping
approximately the same strength. As explained elsewhere [14], it looks plausible to assume the
coherence length in the range 1 − 10 Mpc. Correspondingly, the inferred strength lies in the
range 0.3− 1.0 nG [14].

3 Predicted energy spectrum

Our ultimate goal consists in the evaluation of the probability Pγ→γ(E, D) that a photon
remains a photon after propagation from the source to us when allowance is made for photon-
ALP oscillations as well as for photon absorption from the EBL. As a consequence, Eq. (2)
gets replaced by

Φobs(E, D) = Pγ→γ(E, D)Φem(E) . (4)

We proceed as follows. We first solve exactly the beam propagation equation arising from LALP

over a single domain, assuming that the EBL is described by the “best-fit model” of Kneiske
et al. [15]. Starting with an unpolarized photon beam, we next propagate it by iterating the
single-domain solution as many times as the number of domains crossed by the beam, taking
each time a random value for the angle between B and a fixed overall fiducial direction. We
repeat such a procedure 10.000 times and finally we average over all these realizations of the
propagation process.

We find that about 13% of the photons arrive to the Earth for E = 500 GeV, representing
an enhancement by a factor of about 20 with respect to the expected flux without DARMA
mechanism (the comparison is made with the above “best-fit model”). The same calculation
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gives a fraction of 76% for E = 100 GeV (to be compared to 67% without DARMA mechanism)
and a fraction of 3.4% for E = 1 TeV (to be compared to 0.0045% without DARMA mechanism).
The resulting spectrum is exhibited in Fig. 1. The solid line represents the prediction of the
DARMA scenario for B ≃ 1 nG and Ldom ≃ 1 Mpc and the gray band is the envelope of the
results obtained by independently varying B and Ldom within a factor of 10 about such values.
These conclusions hold for m≪ 10−10 eV and we have taken for definiteness M ≃ 4 · 1011 GeV
but we have checked that practically nothing changes for 1011 GeV < M < 1013 GeV.

Our prediction can be tested in the near future by the satellite-borne GLAST detector as
well as by the ground-based IACTs H.E.S.S., MAGIC, CANGAROO III, VERITAS and by the
Extensive Air Shower arrays ARGO-YBJ and MILAGRO.
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Figure 1: The two lowest lines give the fraction of photons surviving from 3C279 without the DARMA
mechanism within the “best-fit model” of EBL (dashed line) and for the minimum EBL density compat-
ible with cosmology (dashed-dotted line) [15]. The solid line represents the prediction of the DARMA
mechanism as explained in the text.
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