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We discuss duality in “two-photon”-like processes in the scalar ϕ3
E model and also in the

process γ∗γ → ππ in QCD. Duality implies the equivalence between two distinct non-
perturbative mechanisms. These two mechanisms, one involving a twist-3 Generalized
Distribution Amplitude, the other employing a leading-twist Transition Distribution Am-
plitude, are associated with different regimes of factorization. In the kinematical region,
where the two mechanisms overlap, duality is observed for the scalar ϕ3

E model, while in
the QCD case the appearance of duality turns out to be sensitive to the particular non-
perturbative model applied and can, therefore, be used as a tool for selecting the most
appropriate one.

1 Introduction

The only known method today to apply QCD in a rigorous way is based on the factorization
of the dynamics and the isolation of a short-distance part that becomes this way accessible to
perturbative techniques of quantum field theory (see, [1, 2, 3] and for a review, for instance, [4]
and references cited therein). Then, the conventional systematic way of dealing with the long-
distance part is to parameterize it in terms of matrix elements of quark and gluon operators
between hadronic states (or the vacuum). These matrix elements stem from nonperturbative
phenomena and have to be either extracted from experiment or be determined on the lattice.
In many phenomenological applications they are usually modeled in terms of various nonper-
turbative methods or models.

Generically, the application of QCD to hadronic processes involves the consideration of
hard parton subprocesses and (unknown) nonperturbative functions to describe binding effects.
Prominent examples are hard exclusive hadronic processes which involve hadron distribution
amplitudes (DAs), generalized distribution amplitudes (GDAs), and generalized parton distri-
butions (GPDs) [5, 6, 7, 8]. Applying such a framework, collisions of a real and a highly-virtual
photon provide a useful tool for studying a variety of fundamental aspects of QCD.

Recently, nonperturbative quantities of a new kind were introduced—transition distribution
amplitudes (TDAs) [9, 10, 11]—which are closely related to the GPDs. In contrast to the GDAs,
the TDAs appear in the factorization procedure when the Mandelstam variable s is of the same
order of magnitude as the large photon virtuality Q2, while t is rather small. Remarkably, there
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exists a reaction where both amplitude types, GDAs and TDAs, can overlap. This can happen
in the fusion of a real and transversely polarized photon with a highly-virtual longitudinally
polarized photon, giving rise to a final state which comprises a pair of pions. The key feature
of this reaction is that it can potentially follow either path: proceed via twist-3 GDAs, or go
through the leading-twist TDAs, as illustrated in Fig. 1. Such an antagonism of alternative
factorization mechanisms in this reaction seems extremely interesting both theoretically and
phenomenologically and deserves to be studied in detail.

The intimate relation between these two mechanisms in the production of a vector-meson
pair was analyzed in [12] and it was found that these mechanisms can be selected by means of the
different polarizations of the initial-state photon. In contrast, for (pseudo)scalar particles, such
as the pions, this effect is absent enabling us to access the overlap region of both mechanisms
and their duality as opposed to their additivity.

In this talk, we will report on the possibility for duality between these antagonistic mech-
anisms of factorization, associated either with GDAs or with TDAs, in the regime where both
Mandelstam variables s and t are rather small compared to the large photon virtuality Q2.
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Figure 1: Two ways of factorization: via the GDA mechanism and via the TDA mechanism.

2 Regimes of Factorization within the ϕ3
E-model

Consider first the factorization of the scalar ϕ3
E model in Euclidean space. To study the four-

particle amplitude in detail, it is particularly useful to employ the α-representation—see [7].
Then, the contribution of the leading “box” diagram can be written as (while details can be
found in [13])

A(s, t,m2) = − g4

16π2

∞∫

0

4∏
i=1

dαi

D2
exp

[
− 1

D

(
Q2α1α2 + sα2α4 + tα1α3 +m2D2

)]
, (1)

where m2 serves as a infrared (IR) regulator, s > 0, t > 0 are the Mandelstam variables in the

Euclidean region, and D =
4∑
i=1

αi. Assuming that q2 = Q2 is large compared to the mass scale

m2 (which simulates here the typical scale of soft interactions), the amplitude (1) can indeed be
factorized. As regards the other two kinematic variables s and t, one can identify three distinct
regimes of factorization: (a) s� Q2 while t is of order Q2; (b) t � Q2 while s is of order Q2;
(c) s, t� Q2.
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Figure 2: The ratios R1 and R2 as functions of s/Q2.

Regime (a): The process is going through the s-channel. In this regime, the main contri-
bution in the integral in Eq. (1) arises from the integration over α1 when α1 ∼ 0:

Aas
GDA(s, t,m2) = − g4

16π2

∞∫

0

dα2 dα3 dα4

D2
0

exp

(
−sα2α4

D0
−m2D0

)[
Q2 α2

D0
+ t

α3

D0
+m2

]−1

. (2)

Schematically this means that the propagator, parameterized by α1, can be associated with the
partonic (hard) subprocesses, while the remaining propagator constitutes the soft part of the
considered amplitude, i.e., the scalar version of the GDA.

Regime (b): Here we have to eliminate from the exponential in Eq. (1) the variables Q2

and s, which are large. This can be achieved by integrating over the region α2 ∼ 0. Performing
similar manipulations as in regime (a), we find that the scalar TDA amplitude can be related
to the scalar GDA via Aas

TDA(s, t,m2) = Aas
GDA(t, s,m2).

Regime (c): The relevant regime to investigate duality is when it happens that both
variables s and t are simultaneously small compared to Q2, i.e., when s, t � Q2. In this
case, there are two possibilities to extract the leading Q2-asymptotics, notably, we can either
integrate over the region α1 ∼ 0, or integrate instead over the region α2 ∼ 0. Clearly, these
two options can be associated with (i) the GDA mechanism of factorization with the meson
pair scattered at a small angle in its center-of-mass system or, alternatively, (ii) with the TDA
mechanism of factorization. We stress that we may face double counting when naively adding
these two contributions. We interpret such a behavior as a signal of an ingrained tendency for
duality between the GDA(s-channel) and the TDA (t-channel) factorization mechanisms.

In order to verify the appearance of duality we carry out a numerical investigation of the
exact and the asymptotic amplitudes. In doing so, we introduce the following ratios R1 =
Aas

TDA/A and R2 = Aas
GDA/A. Appealing to the symmetry of these ratios under the exchange

of the variables s ↔ t, we take t/Q2 to be 0.01 and look for the variation of the ratios with
s/Q2. This variation is illustrated in Fig. 2 from which one sees that in the region where s/Q2

is rather small, i.e., in the range (0.01, 0.05), both asymptotic formulae are describing the exact
amplitude with an accuracy of more than 90%. This behavior supports the conclusion that,
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when both Mandelstam variables s/Q2 and t/Q2 assume values in the wide interval (0.001, 0.7),
duality between the TDA and the GDA factorization mechanisms emerges.

3 TDA- and GDA-Factorizations for γγ∗→ ππ

Having discussed the appearance of duality between the GDA and the TDA factorization
schemes within a toy model, we now turn attention to real QCD. To analyze duality, we con-
sider the exclusive π+π− production in a γTγ

∗
L collision, where the virtual photon with a large

virtuality Q2 is longitudinally polarized, whereas the other one is quasi real and transversely
polarized. Notice that the GDA and the TDA regimes correspond to the same helicity ampli-
tudes. Given that the considered process involves a longitudinally and a transversally polarized
photon, we are actually dealing with twist-3 GDAs [14]. On the other hand, for the twist-2 con-
tribution, related to the meson DA, we use the standard parametrization of the π+-to-vacuum
matrix element which involves a bilocal axial-vector quark operator [1]. Finally, the γ → π−

axial-vector matrix elements can be parameterized in the form, cf. [10],

〈π−(p2)|ψ̄(−z/2)γαγ5[−z/2; z/2]ψ(z/2)|γ(q′, ε′)〉 F= e

fπ
ε′T ·∆TPαA1(x, ξ, t) , (3)

where P = (p2 + q′)/2, and ∆ = p2 − q′, and noticing that the symbol
F
= means Fourier

transformation and that the vector matrix element does not contribute here. To normalize the
axial-vector TDA, A1, we express it in terms of the axial-vector form factor measured in the
weak decay π → lνlγ [15, 16, 13]. The helicity amplitude associated with the TDA mechanism
reads

ATDA
(0,j) = FTDA ε

′ (j) ·∆T

Q
(4)

with

FTDA = [4π αs(Q
2)]

CF
2Nc

(
tw−2 DA

)(
tw−2 TDA

)
, (5)

where

(
tw−2 DA

)
=

1∫

0

dy φπ(y)

(
1

y
+

1

ȳ

)
,

(
tw−2 TDA

)
=

1∫

−1

dxA1(x, ξ, t)

(
eu

ξ − x −
ed

ξ + x

)
, (6)

employing the 1-loop αs(Q
2) in the MS-scheme with ΛQCD = 0.312 GeV for Nf = 3 [17]. [Note

that there is only a mild dependence on ΛQCD.]
Turning now to the helicity amplitude, which includes the twist-3 GDA, we anticipate that

it can be written as (see, for example, [14])

AGDA
(0,j) = FGDA ε

′ (j) ·∆T

Q
(7)
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with

FGDA = 2
W 2 +Q2

Q2
(e2
u + e2

d)

(
tw− 3 GDA WW

)
, (8)

where

(
tw− 3 GDA WW

)
=

1∫

0

dy ∂ζΦ1(y, ζ,W 2)

(
ln ȳ

y
− ln y

ȳ

)
, (9)

with the partial derivative being defined by ∂ζ = ∂/∂(2ζ− 1). In deriving (8), we have used for
the twist-3 contribution the Wandzura-Wilczek approximation. Duality between expressions
(5) and (8) may occur in that regime, where both variables s and t are simultaneously much
smaller in comparison to the large photon virtuality Q2. More insight into the relative weight of
the amplitudes with TDA or GDA contributions can be gained once we have modeled these non-
perturbative quantities. We commence our analysis with the TDAs and, assuming a factorizing
ansatz for the t-dependence of the TDAs, we write A1(x, ξ, t) = 2 fπ

mπ
FA(t)A1(x, ξ), where

the t-independent function A1(x, ξ) is normalized to unity. To satisfy the unity-normalization
condition, we introduce a TDA defined by

A1(x, 1) =
Anon−norm

1 (x, 1)
1∫
−1

dxAnon−norm
1 (x, 1)

(10)

and continue with the discussion of the t-independent TDAs. Recalling that we are mainly
interested in TDAs in the region ξ = 1 [1, 2], it is useful to adopt the following parametrization

Anon−norm
1 (x, 1) = (1− x2)

(
1 + a1C

(3/2)
1 (x) + a2C

(3/2)
2 (x) + a4C

(3/2)
4 (x)

)
, (11)

where a1, a2, a4 are free adjustable parameters, encoding nonperturbative input, and the stan-
dard notations for Gegenbauer polynomials are used. It is not difficult to show that the TDA
expressed by Eq. (11) results from summing a D-term, i.e., the term with the coefficient a1, and
meson-DA-like contributions. For our analysis, we suppose that a1 ≡ d0 [8], which is equal to
−0.5 in lattice simulations. With respect to the parameters a2 and a4, we allow them to vary in
quite broad intervals, notably, a2 ∈ [0.3, 0.6] and a4 ∈ [0.4, 0.8], that would cover vector-meson
DAs with very different profiles at a normalization scale µ2 ∼ 1GeV 2 (see, for example, [18]).
The function Φ1(z, ζ) is rather standard and well-known (details in [5, 13]).

We close this section by summarizing our numerical analysis presented in [13]. We calculated
both functions FTDA and FGDA, and show the results in Fig. 3. The dashed line corresponds
to the function FTDA, where we have adjusted the free parameters to a2 = 0.6, a4 = 0.8. The
results, obtained for rather small values of these parameters, are displayed by the broken lines
in the same figure. The dotted line denotes the function FTDA with a2 = 0.5 and a4 = 0.6,
whereas the dashed-dotted line employs a2 = 0.3 and a4 = 0.4. For comparison, we also
include the results for FGDA. In that latter case, the dense-dotted line corresponds to the GDA
amplitude, where the expression for B̃12 has been estimated via Eq. (20) of [13], while the solid
line represents the simplest ansatz for B̃12 with Rπ = 0.5. From this figure one may infer that
when the parameter B̃12, which parameterizes the GDA contribution, is estimated with the aid
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Figure 3: Helicity amplitudes FTDA and FGDA as functions of Q2, using a1 = −0.5 found in
lattice simulations. The value of s/Q2 varies in the interval [0.06, 0.3].

of the Breit-Wigner formula (provided s, t � Q2), there is duality between the GDA and the
TDA factorization mechanisms. Hence, the model for Φ1(z, ζ), which takes into account the
corresponding resonances, can be selected by duality.

4 Conclusions

We have provided evidence that when both Mandelstam variables s and t turn out to be much
less than the large momentum scaleQ2, with the variables s/Q2 and t/Q2 varying in the interval
[0.001, 0.7], the TDA and the GDA factorization mechanisms are equivalent to each other and
operate in parallel. We have also demonstrated that duality may serve as a tool for selecting
suitable models for the nonperturbative ingredients of various exclusive amplitudes entering
QCD factorization. In this context, we observed that twist-3 GDAs appear to be dual to the
convolutions of leading-twist TDAs and DAs, multiplied by a QCD effective coupling.

5 Acknowledgments

We would like to thank A. P. Bakulev, A. V. Efremov, N. Kivel, B. Pire, M. V. Polyakov,
M. Prasza lowicz, L. Szymanowski, and S. Wallon for useful discussions and remarks. This
investigation was partially supported by the Heisenberg-Landau Programme (Grant 2008),
the Alexander von Humboldt Stiftung, the Deutsche Forschungsgemeinschaft under contract
436RUS113/881/0, the EU-A7 Project Transversity, the RFBR (Grants (grants 09-02-01149
and 07-02-91557), the Russian Federation Ministry of Education and Science (Grant MIREA
2.2.2.2.6546), the RF Scientific Schools grant 195.2008.9, and INFN.

References
[1] A. V. Efremov and A. V. Radyushkin, Phys. Lett. B 94, 245 (1980).

6 PHOTON09

PHOTON-PHOTON COLLISION: AMBIGUITY AND DUALITY IN QCD FACTORIZATION . . .

PHOTON09 381



Theor. Math. Phys. 42, 97 (1980) [Teor. Mat. Fiz. 42, 147 (1980)].

[2] G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979); Phys. Rev. D 22, 2157 (1980).

[3] J. C. Collins, D. E. Soper and G. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1988) [arXiv:hep-
ph/0409313].

[4] N. G. Stefanis, Eur. Phys. J. direct C 7, 1 (1999) [arXiv:hep-ph/9911375].

[5] M. Diehl, Phys. Rept. 388, 41 (2003) [arXiv:hep-ph/0307382].

[6] A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418, 1 (2005) [arXiv:hep-ph/0504030].

[7] A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997) [arXiv:hep-ph/9704207].

[8] K. Goeke, M. V. Polyakov and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001) [arXiv:hep-
ph/0106012].

[9] L. L. Frankfurt, M. V. Polyakov and M. Strikman, arXiv:hep-ph/9808449.

[10] B. Pire and L. Szymanowski, Phys. Rev. D 71, 111501 (2005) [arXiv:hep-ph/0411387].

[11] J. P. Lansberg, B. Pire and L. Szymanowski, Phys. Rev. D 73, 074014 (2006) [arXiv:hep-ph/0602195].

[12] B. Pire, M. Segond, L. Szymanowski and S. Wallon, Phys. Lett. B 639, 642 (2006) [arXiv:hep-ph/0605320].

[13] I. V. Anikin, I. O. Cherednikov, N. G. Stefanis and O. V. Teryaev, Eur. Phys. J. C 61, 357 (2009)
[arXiv:0806.4551 [hep-ph]].

[14] I. V. Anikin and O. V. Teryaev, Phys. Lett. B 509, 95 (2001) [arXiv:hep-ph/0102209].

[15] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).

[16] M. Bychkov et al., arXiv:0804.1815 [hep-ex].

[17] A. L. Kataev, G. Parente and A. V. Sidorov, Phys. Part. Nucl. 34, 20 (2003) [Fiz. Elem. Chast. Atom.
Yadra 34, 43 (2003 ERRAT,38,827-827.2007)] [arXiv:hep-ph/0106221].

[18] A. P. Bakulev, S. V. Mikhailov and R. Ruskov, arXiv:hep-ph/0006216.

PHOTON09 7

I. .V. A NIKIN , I. O. CHEREDNIKOV, N. G. STEFANIS AND O. V. TERYAEV

382 PHOTON09


