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Twist-2 components of the real and virtual photon distribution amplitudes are evaluated
in several chiral quark models. The results, obtained at the quark model scale, are then
evolved to higher scales, probed in experiments or in lattice QCD. We also analyze the re-
lated form factors and coupling constants. Our results are a genuine dynamical prediction,
following from the chiral dynamics.

1 Basics

This talk is based on Ref. [1], where more details and results can be found. Our approach is
based on the fact that the spontaneously broken chiral symmetry provides the basic dynamics
for the evaluation of soft matrix element involving the Goldstone bosons (pion, kaons) and
gauge currents (photons, W±, Z). That way one may evaluate in a genuinely dynamical way
the soft quantities appearing in high-energy processes. A detailed presentation of the method
and the compilation of predictions for the pion matrix elements can be found in Ref. [2].

A crucial ingredient of the method is the QCD evolution from the a priori unknown quark
model scale to the scales relevant for the experiments or lattice calculations. Thus the scheme
consists of two steps: 1) the evaluation of soft matrix elements in the chiral quark model and
2) the QCD evolution to a higher scale. The quark model scale may be estimated with the help
of the momentum sum rule [2], and is found to be low, Q0 ' 320 MeV (for the local chiral quark
models). After the QCD evolution, a successful description of the available data for the pion
is achieved for the parton distribution function (PDF) and the distribution amplitude (DA).
There are numerous quark-model studies of these quantities as well as the more general pion
generalized parton distributions (GPD’s) in the literature [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21]. A related quantity, the pion-photon transition distribution amplitude
(TDA) [22, 23] has also been evaluated in this framework [24, 25, 26].

The hadronic part of the photon wave-function consists, in the large-Nc limit, of a quark-
antiquark pair. Since the chiral dynamics provides the quarks a large (constituent) mass, it
influences the photon dynamics. Here we apply the methods developed and tested earlier for
the pion to the photon case. We focus on the photon DA’s, while the photon structure function
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Table 1: The constants obtained in the quark model and evaluated to the reference scale of
1 GeV.

quantity at 1 GeV non-local SQM QCD s.r. VMD

(−〈0 |qq| 0〉)1/3 [GeV] 0.24 0.24 0.24 ± 0.02 -
χm [GeV2] 2.73 1.37 3.15 ± 0.3 3.37
f3γ [GeV−2] -0.0035 -0.0018 -0.0039 ± 0.0020 -0.0046

is left for a separate study. The leading-twist photon distribution amplitudes (DA’s) are defined
via the matrix elements of quark bilinears delocalized along the light cone [27, 28, 29, 30],

〈0|q(z)σµν [z,−z]q(−z)|γλ(q)〉 =

ieq〈q̄q〉χmf
t
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where ε(λ) · q = 0 and ε(λ) · n = 0 (for real photons) and
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The quark magnetic susceptibility, χm, and f3γ are constants, f t⊥γ(q2) and fv‖γ(q2) are form

factors, φ⊥γ(x, q2) and φ‖γ(x, q2) denote the DA’s, while h.t. stands for the disregarded higher-
twist contributions.

Figure 1: Feynman diagram for the eval-
uation of the photon DA’s in chiral quark
models.

The leading-Nc quark model evaluation pro-
ceeds according to the one-loop diagram, where
one of the vertices corresponds to the photon and
the other to the probing operator, in our case σµν

and γµ. The quark propagators involve a con-
stituent quark mass, due to spontaneous break-
ing of the chiral symmetry. We use a few vari-
ants of chiral quark models: the Nambu–Jona-
Lasinio (NJL) (for reviews see, e.g., [31, 15] and
references therein) and the Spectral Quark model
(SQM) [11, 32], which incorporates the vector-meson dominance, as well as the instanton-
motivated non-local chiral quark model of Ref. [33, 34, 35, 36, 37]. In nonlocal models the
quark mass depends on the virtuality, As a consequence, the vertices acquire corrections due
to nonlocalities to consistently account for gauge and chiral Ward identities.

2 Results

The result for the constants are presented in Table 1, where we also give the estimates of
the QCD sum rules and the Vector Meson Dominance model [30]. QCD predicts the scale
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Figure 2: Left: the twist-2 tensor (dashed line) and vector (solid line) form factors in the non-
local model. Right: the transverse DA of the photon, φ⊥γ(x, q2 = 0). Solid – non-local model,
dot-dashed – local model, dotted – approximation of Ref. [38], dashed – the asymptotic form
6x(1− x).

dependence for the quark condensate 〈0 |qq| 0〉, its magnetic susceptibility χm, and f3γ . At the
leading order

〈0 |qq| 0〉|µ = L−γqq/b 〈0 |qq| 0〉|µ0
, χm|µ = L−(γ0−γqq)/b χm|µ0

, f3γ |µ = L−γf/b f3γ |µ0

where r = αs
(
µ2
)
/αs

(
µ2

0

)
, b = (11Nc − 2nf ) /3, is the evolution ratio, with γqq = −3CF ,

γ0 = CF , γf = 3CA − CF /3, CF = 4/3, and CA = 3 for Nc = 3. We evolve from the quark
model scale, Q0 = 320 MeV, to the reference scale of 1 GeV. We note a similar magnitude
and signs compared to the QCD sum rules or VMD estimates, with the local model producing
smaller values than the nonlocal model.

The form factors from the non-local quark model are shown in the left panel of Fig. 2. For
the local models (not displayed) the results are very similar. They exhibit the typical fall-off
scale of ∼ mρ In particular, in SQM we recover the exact VMD formula

f t,SQM
⊥γ (q2) =

m2
ρ

m2
ρ + q2

.

We note that the vector DA φ⊥γ(x, q2 = 0) = 1 in local models and is very close to 1 in
non-local models. For the virtual photon SQM gives the simple formulas:

φ‖γ∗(x, q
2) =

1 + q2

m2
ρ(

1+ 4q2

m2
ρ
x(1− x)

)3/2
.

In the limit of q2 → −m2
ρ it becomes δ

(
x− 1

2

)
, a quite reasonable result.

One may also study the photon light-cone wave function (a k⊥-unintegrated object). It has
a simple form in SQM (at the quark-model scale):

Φ⊥γ(x,k⊥) =
6

m2
ρ(1 + 4k2

⊥/m
2
ρ)

5/2
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Figure 3: The leading order ERBL evolution of the leading-twist tensor DA, φ⊥γ(x, q2) eval-
uated in the local model at various virtualities: real photon (top left), ρ-meson (top right),
virtual photon at q2 = −Q2 = m2

ρ/2 (bottom left), and virtual photon at q2 = −Q2 = −2m2
ρ

(bottom right). Initial conditions, indicated by dotted lines, are evaluated in SQM at the initial
quark-model scale. The solid lines correspond to LO QCD evolution to the scales Q = 1, 2.4,
10, and 1000 GeV. With the larger the scale the evolved DA becomes closer to the asymptotic
form 6x(1− x), plotted with the dashed line. The corresponding values of the evolution ratio
r are given in the figures.

Note the power-law fall-off at large transverse momenta, Φ⊥γ(x,k⊥) ∼ 1/k5
⊥. In cross section

this leads to tails ∼ 1/k10
⊥ . For the virtual photon

Φ⊥γ∗(x,k⊥) =
6
(

1 + q2

m2
ρ

)

m2
ρ

(
1 + 4

k2
⊥+q2x(1−x)

m2
ρ

)5/2

3 QCD evolution of DA’s

Now we come to the QCD evolution, which, as already stressed, is crucial in bringing the results
to the scales probed in experiments or lattices. We carry out the standard LO ERBL evolution
with anomalous dimensions taken for the appropriate channels [39]. The method leads to simple
expressions, diagonal in the Gegenbauer moments. In Fig. 3 we show the results for the tensor
DA for the real photon, the ρ-meson, and the virtual photon. We note the large change caused
by the evolution, which fairly fast brings the model predictions to the vicinity of the asymptotic

4 PHOTON09

WOJCIECHBRONIOWSKI, ALEXANDR E. DOROKHOV AND ENRIQUE RUIZ ARRIOLO

372 PHOTON09



0.2 0.4 0.6 0.8 1
x

0.25

0.5

0.75

1

1.25

1.5

1.75

2
r=1, 0.5, 0.25, 0.1, 0.05

0.2 0.4 0.6 0.8 1
x

0.25

0.5

0.75

1

1.25

1.5

1.75

2
r=1, 0.5, 0.25, 0.1, 0.05

Figure 4: The LO ERBL evolution of the nonlocal model predictions for the leading-twist
vector DAs of the photon, φ‖γ(x, q2). Left: real photon, right: the virtual photon at q2 = 0.25
GeV2. The dashed lines show the asymptotic DA, 6x(1 − x). The initial conditions (dotted
line) are evaluated in the nonlocal quark model at the initial scale Qinst

0 = 530 MeV. The
solid lines correspond to evolved DA’a at subsequent scales Q = 1, 2.4, 10, and 1000 GeV.
The corresponding values of the evolution ratio r are given in the figures. Tiny wiggles in the
evolved curves is a numerical effect.

limit. Similar results can be done in the nonlocal model, as well as for the vector DA [1]. We
show the results in Fig. 4.

4 Conclusion

Chiral quark models provide a link between high- and low-energy analyses, allowing to compute
various soft matrix elements for hadronic processes. They yield in a fully dynamical way the
initial conditions for the QCD evolution, which is essential to bring the predictions up to the
experimental or lattice scales. Numerous predictions for processes involving the Goldstone
bosons and photons can be made. The scale in chiral quark models is low, about 320 MeV,
hence the QCD evolution is “fast”. Simple analytic formulas – useful to understand the general
properties, can be obtained in local quark models. For the pion, with the LO QCD evolution
the overall agreement with the available data and lattice simulations is very reasonable (PDF,
DA, GPD, TDA, generalized form factors [40]). While the presented results for the can be used
in phenomenological analyses in high-energy reactions (see, e.g., the recent work of Ref. [41]),
the model predictions can be further tested also with future lattice simulations for the photon
and ρ-meson.
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