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After briefly recalling the experimental motivations for studying high energy scattering
at strong coupling, as coming from the heavy–ion collisions at RHIC, I will focus on two
related topics: (i) a lattice test for strong coupling behaviour in QCD at finite tempera-
ture, and (ii) the use of string theory, via the AdS/CFT correspondence, for describing
photon interactions (deep inelastic scattering and electron–positron annihilation) at strong
coupling. I will emphasize some striking predictions of the strong–coupling scenario, like
the absence of pointlike constituents in a hadron wavefunction and the lack of jets in the
final state of a hadronic collision.

1 Introduction: Jet quenching at RHIC

Some of the experimental discoveries at RHIC, notably the unexpectedly large medium effects
known as elliptic flow and jet quenching, led to the suggestion that the deconfined hadronic
matter produced in the intermediate stages of a heavy ion collision behaves like a strongly
coupled plasma. The coupling constant αs = g2/4π in QCD can never become large, because
of asymptotic freedom, but it can be of order one at scales of order ΛQCD, and this might lead
to an effectively strong–coupling behavior. It is notoriously difficult to do reliable estimates in
QCD when αs ≃ 1, so it has become common practice to look to the N = 4 supersymmetric
Yang–Mills (SYM) theory, whose strong coupling regime can be addressed within the AdS/CFT
correspondence [1], for guidance as to general properties of strongly coupled plasmas (see the
review papers [2, 3, 4]). Since conformal symmetry is an essential property of N = 4 SYM,
this theory is probably not a good model for the dynamics in QCD in the vicinity of the
deconfinement phase transition (T ≃ Tc ≃ 200 MeV), where the conformal anomaly associated
with the running of the coupling in QCD is known to be important. But lattice QCD studies
[5] also show that the conformal anomaly decreases very fast with increasing T above Tc and
becomes unimportant for temperatures T & 2Tc. Hence, there is a hope that, within the
intermediate range of temperatures at 2Tc . T . 5Tc, which is the relevant range for the
phenomenology of heavy ion collisions at RHIC and LHC, the dynamics in QCD may be at
least qualitatively understood by analogy with N = 4 SYM theory at strong coupling.

The most intriguing among the RHIC data are those referring to jet quenching, i.e., the
energy loss and the transverse momentum broadening for a relatively ‘hard’ probe — a heavy
and/or energetic quark or lepton, with transverse momentum of a few GeV —, for which
one would naively expect a weak–coupling behavior, because of the asymptotic freedom of
QCD. Yet, perturbative QCD seems to be unable to explain the strong suppression of particle
production in Au+Au collisions, as shown in Fig. 1 (the left figure). Namely, the ratio RAA

between the particle yield in Au+Au collisions and that in p+p collisions rescaled by the number
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Figure 1: Left: The ratio RAA of measured versus expected yield of various particles (π0, η, γ) in
Au+Au collisions at

√

sNN = 200 GeV as function of the transverse momentum pT (RHIC, PHENIX
collaboration). Right: Azimuthal correlations for jet measurements at RHIC (STAR collaboration) in
p+p, d+Au, and Au+Au collisions.

of participants would be one if a nucleus–nucleus collision was the incoherent superposition
of collisions between the constituents nucleons of the two incoming nuclei. But the RHIC
measurements show that RAA is close to one only for direct photon production, whereas for
hadron production it is close to 0.2. This suggests that, after being produced through a hard
scattering, the partonic jets are somehow absorbed by the surrounding medium.

Additional evidence in that sense comes from studies of jets, cf. Fig. 1 right. A high–
energy proton–proton (or electron–positron) collision generally produces a pair of partons whose
subsequent evolution (via fragmentation and hadronisation) leaves two jets of hadrons which
propagate back–to–back in the center of mass frame. Hence, the distribution of the final state
radiation w.r.t. the azimuthal angle ∆Φ shows two pronounced peaks, at ∆Φ = 0 and π;
this is the curve denoted as ‘p+p min. bias’ in Fig. 1 right. A similar distribution is seen in
deuteron–gold collisions, but not in central Au+Au collisions, where the peak at ∆Φ = π has
disappeared, as shown by the respective RHIC data in Fig. 1 right. It is then natural to imagine
that the hard scattering producing the jets has occurred near the edge of the interaction region,
so that the near side jet has escaped to the detector, while the away side jet has been absorbed
within the medium.

One should nevertheless keep in mind that this phenomenology is quite difficult and not
devoid of ambiguities: strong assumptions are necessary in order to compute the energy loss of,
say, a heavy quark in the medium, and also to extract its value from the RHIC data.

2 A lattice test of the coupling strength in QCD

In view of the experimental difficulties, it is natural to ask whether lattice gauge theory can
illuminate this question. In what follows, we shall describe a recent proposal in that sense [6],
which involves the lattice measurement of leading–twist operators. These are the operators
with spin n, classical dimension d = n +2, and twist t = d−n = 2, which in the weak coupling
regime control the operator product expansion (OPE) of deep inelastic scattering (DIS) at
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large photon virtuality Q2 [7]. There are two infinite sequences of leading–twist operators —
the fermionic ones and the gluonic ones — among which we only show here those with n = 2:

Oµν
f ≡ 1

2
q̄
(

γµiDν + γνiDµ
)

q , (1)

(the sum over quark flavors is implicit and we neglect the quark masses) and

Oµν
g ≡ −Fµα

a F ν,a
α +

1

4
gµνFαβ

a F a
αβ . (2)

These two operators are recognized as the energy–momentum tensors for quarks and gluons,
respectively. More generally, the hadron expectation values of the spin–n leading–twist oper-
ators measure the (n − 1)–th moment of the longitudinal momentum fraction carried by the
quark and gluon constituents of that hadron.

Being composite, these operators are well defined only with a renormalization prescription,
and thus implicitly depend upon the renormalization scale Q2. Physically, this dependence
expresses the fact that quantum fields can radiate and their internal structure in terms of ‘bare’
quanta depends upon the resolution scale Q2 at which one probes this structure.

For instance, the success of the valence parton model for high–energy scattering in QCD
is deeply related to the asymptotic freedom property of QCD. This property guarantees that
parton branching at Q2 ≫ Λ2

QCD is controlled by weak coupling, via the bremsstrahlung process.
This in turn favors the emission of ‘soft’ and ‘collinear’ quanta, i.e. quanta which carries
only a small fraction x of the longitudinal momenta of their parent partons and relatively
small transverse momenta. Hence, although there are many small–x gluons in the proton
wavefunction at high energy, most of the proton longitudinal momentum is still carried by the
point–like valence quarks.

By contrast, at strong coupling one expects parton branching to be ‘quasi democratic’ : the
energy of the parent parton is quasi equally shared by the daughter partons, so that all partons
will cascade down to low–momentum constituents [8, 9, 10]. At finite temperature, it is natural
to assume that the branchings have taken place between the temperature scale T and the “hard”
resolution scale Q, with Q ≫ T , at which the operator is evaluated. Hence, although there is
in principle no contradiction in having a quasiparticle picture for a strongly–coupled plasma on
the thermal scale T (as shown by the similarity between the strong–coupling and, respectively,
zero–coupling results for the entropy density of the N = 4 SYM plasma [1]), one expects these
‘quasiparticles’ to be highly composite, without a pointlike core carrying a significant fraction
of the quasiparticle energy.

These physical considerations find a precise mathematical expression in the renormalization
group equations describing the evolution of the leading–twist operators with the resolution scale
µ2. Up to operator mixing issues to which we shall return in a moment, these equations read

µ2 d

dµ2
O(n) = γ(n)O(n) =⇒ O(n)(Q2)

O(n)(µ2
0)

= exp

{ Q2
∫

µ2
0

dµ2

µ2
γ(n)(µ2)

}

, (3)

for a generic spin–n operator O(n). Here γ(n) is the corresponding anomalous dimension and
is strictly negative — meaning that the evolution increases the number of partons with small
longitudinal momentum fraction x while decreasing that of the partons with larger x —, except
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for the total energy–momentum operator

T µν = Oµν
f + Oµν

g , (4)

which has zero anomalous dimension since it is a conserved quantity (and hence it does not
depend upon the resolution scale Q2). Hence, in the continuum limit Q2 → 0, the expectation
values of all the leading–twist operators except for T must vanish. But the rate of this evolution
is very different at weak and respectively strong coupling.

(i) Weak coupling : To lowest order in the running coupling, one has

γ(n)(µ2) = −a(n) αs(µ
2)

4π
=⇒ O(n)(Q2)

O(n)(µ2
0)

=

[

ln(µ2
0/Λ2

QCD)

ln(Q2/Λ2
QCD)

]a(n)/b0

, (5)

with αs(µ
2) = 4π/[b0 ln(µ2/Λ2

QCD)], b0 = (11Nc−2Nf)/3, and a(n) > 0. Thus, the perturbative
evolution is rather slow — merely logarithmic.

(ii) Strong coupling & conformal field theory : At strong coupling, direct calcu-
lations in QCD are not possible anymore, but we shall use the corresponding results for N = 4
SYM as a hint towards what could be the behavior in QCD in such a strong–coupling scenario.
In a conformal field theory, γ(n) is scale–independent and negative (with the exception of T µν ,
of course), so the evolution is power–like:

O(n)(Q2)

O(n)(µ2
0)

=

[

µ2
0

Q2

]|γ(n)|

. (6)

Moreover, AdS/CFT predicts that, at strong coupling λ ≡ g2Nc ≫ 1, all the non–zero anoma-
lous dimensions are very large |γ(n)| ∼ λ1/4 [11], hence the leading–twist operators rapidly die
away with increasing Q2 (meaning that all partons have fallen down to small values of x). In
particular, the DIS structure functions at strong coupling are controlled by T µν together with
protected higher–twist operators which have zero anomalous dimensions [8].

These results suggest that a natural way to measure the strength of the coupling in QCD
at finite temperature is to compute thermal expectation values of leading–twist operators in
lattice QCD [6]. These operators evolve from the natural physical scale T up to the resolution
scale Q set by the lattice spacing: Q = a−1. In practice, the ratio Q/T = aT is not very large,
Q/T . 10, so if the evolution is perturbative, cf. (5), the expectation value of an unprotected
operator is only slightly reduced. On the other hand, if the plasma is effectively strongly coupled
at the scale T , than at least the early stages of the evolution (say from the scale T up to an
intermediate scale µ ≈ a few times T ) should involve a large negative anomalous dimension,
leading to a strong suppression in the expectation value measured at the final scale Q.

The previous argument applies to the unprotected operators, which include all the higher–
spin operators with n ≥ 4. Unfortunately, however, it turns out that it is very difficult, if
not impossible, to accurately measure on the lattice such high–spin operators. There is another
possibility, though, which should be easier in practice: this is to measure the linear combination
of the spin–2 operators in Eqs. (1)–(2) which is orthogonal to T µν within the renormalization
flow and therefore has a non–zero, and negative, anomalous dimension. There is however a
serious problem with this proposal too: finding the proper orthogonal contribution requires the
knowledge of the relevant anomalous dimensions, which in full QCD are computable only in
perturbation theory, and hence at weak coupling.
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Fortunately, there is a simpler version of the theory where the identification of this operator
becomes possible for any value of the coupling: this is quenched QCD. Loosely speaking, this
is the theory obtained from QCD after removing all the quark loops. On the lattice, this is
non–perturbatively defined by removing the fermionic determinant from the QCD action. Note
that the quark fields are still present in this theory, but only as external probes. As argued in
Ref. [6], Oµν

f is the operator orthogonal to T µν in quenched QCD. Indeed, in quenched QCD, a
quark can emit gluons, but the emitted gluons, as well as those from the thermal bath, are not
allowed to emit quark–antiquark pairs. Hence, when the system is probed on a sufficiently hard
scale, most of the total energy appears in the gluon fields. In the continuum limit, the total
energy–momentum tensor reduces to its gluonic component: T µν → Oµν

g (Q2) as Q2 →∞.
To summarize, the proposal made in Ref. [6] is to measure the thermal expectation value

〈O00
f (Q2)〉T of the quark energy density in lattice quenched QCD, for a temperature T =

2Tc ≃ 600 MeV and for an inverse lattice spacing Q = a−1 ≃ 8T . If the deviation from the
corresponding result for the ideal Fermi–Dirac gas turns out to be relatively small, . 30%,
then one can conclude that the QCD plasma is weakly coupled at the scale T . If on the other
hand the lattice result turns out to be considerably smaller, then there must be a regime in µ
around T where QCD is effectively strongly coupled. Simple estimates together with the RHIC
phenomenology of jet quenching suggest that a suppression by a factor of 5 could be expected
in the strong–coupling scenario [6].

3 DIS and parton saturation at strong coupling

The previous discussion has emphasized the importance of understanding parton evolution at
strong coupling. The OPE provides a valuable tool in that sense [8], but this applies only
for sufficiently large Q2 — where it teaches us that, at strong coupling, the partons disappear
through branching — and thus it cannot tell us what is the final fate of these partons, after
cascading down to lower momenta. In particular, this is inappropriate to study the unitarity
corrections to scattering at high energy. Fortunately, the gauge/string duality also allows us to
directly compute the cross–sections for elementary processes, with results which shed further
light on the parton evolution at strong coupling [3, 4, 8, 9, 10, 12].

The simplest version of the formalism, known as the ‘supergravity approximation’, is ob-
tained by taking the large–Nc limit, or, equivalently, the large ‘t Hooft coupling limit: λ =
g2Nc → ∞ with g fixed and small (g ≪ 1). This is generally not a good limit to study a
scattering process, since the corresponding amplitude is suppressed as 1/N2

c [8, 9], yet it is
meaningful for processes taking place in a deconfined plasma, like those of interest for heavy
ion physics: indeed, the plasma involves N2

c degrees of freedom per unit volume, thus yielding
finite amplitudes when Nc →∞. In this limit, the N = 4 SYM plasma at finite temperature is
described as a black–hole (BH) embedded in AdS5 and the dynamics reduces to classical gravity
in this curved space–time [1, 2, 3, 4]. This BH is homogeneous in the physical 4 dimensions1,
so like the plasma that is it dual to, but it has an horizon in the radial, or ‘fifth’, dimension of
AdS5, at a position which is determined by the temperature of the plasma.

The AdS5 BH geometry is illustrated in Fig. 2, which also shows the supergravity process
dual to DIS off the N = 4 SYM plasma: A space–like virtual photon, with 4–momentum
qµ = (ω, 0, 0, q) and virtuality Q2 ≡ q2 − ω2 ≫ T 2, acts as a perturbation on the Minkowski

1More recently, a finite–length plasma ‘slice’ has been considered too, as a model for a nucleus which admits
a simple supergravity dual (a ‘shockwave’) [13].
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Figure 2: Space–like current in the plasma: the trajectory of the wave packet in AdS5 and its ‘shadow’
on the boundary. Left: the low energy case — the Maxwell wave gets stuck near the boundary up to
tunnel effect. Right: the high energy case — the wave has an accelerated fall into the BH.

boundary of AdS5 (χ = 0), thus inducing a massless, vector, supergravity field Am (with m = µ
or χ) which propagates within the bulk of AdS5 (χ > 0), according to the Maxwell equations
in curved space–time:

∂m

(√−ggmpgnqFpq) = 0 , where Fmn = ∂mAn − ∂nAm . (7)

Here, gmn is the metric tensor in 5–dimensions which in particular contains the information
about the BH horizon at χ = 1/T (we follow the conventions in [3]). Thus (7) describes the
gravitational interaction between the Maxwell field Am and the BH. The strength of this inter-
action is proportional to the product ω2T 4 between the energy densities in the two interacting
systems — the virtual photon and the plasma. Interestingly, there is a threshold value for this
quantity, of order Q6, below which there is essentially no interaction [10]: so long as ωT 2 ≪ Q3,
the Maxwell wave is stuck within a distance χ . 1/Q ≪ 1/T from the Minkowski boundary
and does not ‘see’ the BH (cf. Fig. 2 left). But for higher energies and/or temperatures, such
that ωT 2 & Q3, the wave gets attracted by the BH and eventually falls into it. Physically, this
means that the energetic space–like photon is absorbed with probability one into the plasma
— the ‘black disk limit’ for DIS (cf. Fig. 2 right).

This critical value Qs ∼ (ωT 2)1/3, together with the physical picture of the scattering, can
be understood with the help of the ‘UV/IR correspondance’, which relates the 5th dimension
of AdS5 to the momenta (or typical sizes) of the quantum fluctuations which are implicitly
integrated out in the boundary gauge theory. Namely, the radial penetration χ of the Maxwell
wave packet in AdS5 is proportional to the transverse size L of the quantum fluctuation of the
virtual photon in the dual gauge theory. By the uncertainty principle, we expect an energetic
space–like photon with ω ≃ q ≫ Q to fluctuate into a partonic system with transverse size
L ∼ 1/Q — which indeed matches the radial penetration of the dual Maxwell field, as illustrated
in Fig. 2 left — and lifetime ∆t ∼ ω/Q2. The space–like fluctuation cannot decay into on–shell
partons (at least, not in the vacuum), because of energy–momentum conservation. But the
situation can change in the presence of the plasma: unlike the photon, which is color neutral,
its partonic fluctuation has a dipolar color moment and thus can interact with the plasma. Via
such interactions, the partons can acquire the energy and momentum necessary to get on–shell,
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and then the fluctuation decays: the space–like photon disappears (cf. Fig. 2 right).
Let us now return to the threshold value Qs ∼ (ωT 2)1/3, to which we shall refer as the

saturation momentum. The condition Q ∼ Qs can be rewritten as

Q ∼ ω

Q2
T 2 , (8)

which admits the following interpretation [10] : the scattering becomes strong when the lifetime
∆t ∼ ω/Q2 of the partonic fluctuation is large enough for the mechanical work W = ∆t× FT

done by the plasma force FT ∼ T 2 acting on these partons becomes sufficient to compensate
for the energy deficit Q of the space–like system. This plasma force FT ∼ T 2 represents in an
average way the effect of the strongly–coupled plasma on color dipole fluctuations and can be
viewed as a prediction of the AdS/CFT calculation.

Introducing the Bjorken x variable x ≡ Q2/(2ωT ) for DIS off the plasma — as usual, this
represents the longitudinal momentum fraction of the plasma constituent which absorbs the
virtual photon —, one can rewrite the plasma saturation line as Qs(x) = T/x or, alternatively,
xs(Q) = T/Q. The AdS/CFT results then suggest a partonic picture for the strongly–coupled
plasma [10]. For Q ≫ Qs(x) (or, equivalently, x ≫ xs(Q)), the scattering is negligible and the
DIS structure function F2 is exponentially small: F2(x, Q2) ∼ exp {−Q/Qs(x)}. This shows
that there are no pointlike constituents in the strongly coupled plasma, in agreement with the
OPE argument in Sect. 2. For x . xs(Q), on the other hand, the scattering is maximal and
the structure function is found to be large: F2(x, Q2) ∼ xN2

c Q2. This is in agreement with our
physical expectation that partons must somehow accumulate at small values of x, as a result
of branching, and is moreover consistent with energy–momentum conservation, which requires

the integral
∫ 1

0
dxF2(x, Q2) to have a finite limit as Q2 →∞ [7]. The previous results imply

∫ 1

0

dxF2(x, Q2) ≃ xsF2(xs, Q
2) ∼ N2

c T 2 , (9)

where the integral is dominated by x ≃ xs(Q): the energy and momentum of the plasma as
probed on a ‘hard’resolution scale Q2 ≫ T 2 is fully carried by the partons ‘along the saturation
line’, i.e., those having x ≃ T/Q. A similar picture holds for other hadronic targets so like
a ‘glueball’ [8, 9] or a ‘nuclear’ shockwave [13], but the respective saturation momentum rises
slower with 1/x than for the infinite plasma: Q2

s(x) ∝ 1/x for a finite–size ‘hadron’ as opposed
to Q2

s(x) ∝ 1/x2 for the plasma. The additional factor 1/x in the case of the plasma comes
from the lifetime ∆t ∼ ω/Q2 ∼ 1/xT of the partonic fluctuation: since the medium is infinite,
the effects of the scattering accumulate all the way along the parton lifetime.

4 High–energy scattering at strong coupling

The parton picture at strong coupling as just described has some striking physical consequences
for the high–energy scattering problem which are vastly different from everything that we know
about the corresponding problem in real–life QCD. For instance, the rapid energy growth
Q2

s(x) ∝ 1/x of the saturation momentum, which is automatic in this gravity context, is much
faster than the respective growth observed in the HERA data, namely Q2

s ∼ 1/xω with ω ≃
0.2÷ 0.3, and which is in fact well accounted for by perturbative QCD [14]. Also, the absence
of large–x partons in a hadronic wavefunction at strong coupling means that, in a hypothetical
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scattering between two such hadrons, there would be no hard particle production at either
forward or backward rapidities: the two nuclei colliding with each other at strong coupling
would fully stop each other [15]. This is in sharp contrast to the situation at RHIC, where the
large–x partons from the incoming nuclei are seen to emerge from the collision, as hadronic
jets, along their original trajectories (‘leading baryons’).

Figure 3: Final state in e+e− annihilation. Left: weak coupling. Right: strong coupling.

Another striking prediction of AdS/CFT is the absence of jets in electron–positron an-
nihilation at strong coupling [10, 12]. Fig. 3 exhibits the typical, 2–jet, final state in e+e−

annihilation at weak coupling (left) together with what should be the corresponding state at
strong coupling (right). In both cases, the final state is produced via the decay of a time–like
photon into a pair of partons and the subsequent evolution of this pair. At weak coupling this
evolution is rather slow and consists mostly in the emission of soft and collinear gluons, with
the result that the leading partons get dressed into a pair of well–collimated jets of hadrons (cf.
Fig. 3 left). Multi–jet (n ≥ 3) events are possible as well, but they have a lower probability,
as they require hard parton emissions in the final state, which are suppressed by asymptotic
freedom [7]. At strong coupling, on the other hand, parton branching is much more efficient,
as previously explained: all splittings are hard and happen very fast, so they rapidly split the
original energy over many quanta which carry energies and momenta of the order of the soft,
confinement, scale, and which are almost isotropically distributed in space, because of their
large number. Thus, the respective final state shown no sign of jets, but only an isotropic
distribution of hadronic matter (cf. Fig. 3 right) [12].

Let us finally return to our original motivation for studying the dynamics at strong coupling,
which was the propagation of a ‘hard probe’ through a strongly–coupled plasma. Consider
the energy loss by a heavy quark towards the plasma: the respective AdS/CFT calculation
has been given in [16], but the result can be also inferred via physical arguments, using the
previously explained parton picture at strong coupling [17]. Among the virtual, space–like,
quanta which are continuously emitted and reabsorbed by the heavy quark, only those can
escape to the plasma which have a virtuality Q lower than the plasma saturation momentum
Qs(x) for a value of x set by the lifetime of the fluctuation: 1/x ∼ T∆t with ∆t ∼ ω/Q2. Since
dE/dt ∝ ω/∆t ∼ Q2, the energy loss is controlled by the fluctuations having the maximal
possible value for the virtuality, that is, those having Q ∼ Qs(x) with x set by the rapidity γ
of the heavy quark. Using γ = ω/Q and Qs ∼ T/x ∼ γT 2/Qs, one finds Qs ∼ √γT and hence

− dE

dt
≃
√

λ
ω

(ω/Q2
s)
≃
√

λQ2
s ∼

√
λγ T 2 , (10)
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where the factor
√

λ enters via the normalization of the Nambu-Goto action and expresses the
fact that, at strong coupling, the heavy quark does not radiate just a single quanta per time
∆t, but rather a large number ∼

√
λ. Eq. (10) is parametrically consistent with the respective

AdS/CFT result [16]. Note the strong enhancement of the medium effects at high energy, as
expressed by the Lorentz γ factor in the r.h.s of (10): this is in qualitative agreement with the
strong suppression of particle production seen in Au+Au collisions at RHIC, but one should be
very careful before directly comparing such AdS/CFT results with the QCD phenomenology.

To summarize, the strong–coupling picture of high–energy scattering appears to be very
different from everything we know, theoretically and experimentally, about real–life QCD. There
are no valence partons, the saturation momentum (and hence the hadronic cross–sections) grow
much too fast with increasing energy, and there are no jets in the final state of any kind of
collision. This is not necessarily a surprise: within QCD, these high–energy phenomena are
controlled by hard momentum exchanges and thus by weak coupling, by virtue of the asymptotic
freedom. On the other hand, AdS/CFT might give us some qualitative insight in the semi–hard
physics of particle production in heavy ion collisions, and also in some longstanding problems
like thermalization and the emergence of hydrodynamics in the late stages of such a collision.
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