Resonance Searches at HERA

Uri Karshon
Weizmann Institute of Science, Rehovot, Israel
On behalf of the H1 and ZEUS Collaborations

DOI: http://dx.doi.org/10.3204/DESY-PROC-2009-03/Karshon

Inclusive production of $K_{S}^{0} K_{S}^{0}$ in ep collisions was studied with the ZEUS detector. Significant production of $J^{P C}=2^{++}$tensor mesons and of the 0^{++}glueball candidate $f_{0}(1710)$ was seen. Masses and widths were compared with previous experiments. The H1 Collaboration saw a charm pentaquark candidate in the $D^{*} p$ spectrum at 3.1 GeV , which was not confirmed by a ZEUS higher statistics search. With the full HERA statistics, H1 did not see a signal in this region. Masses, widths and helicity parameters of excited charm and charm-strange mesons were measured by ZEUS. Rates of c quarks hadronising into these mesons were determined and a search for a radially excited charm meson was performed.

1 Introduction

The HERA ep collider operated with electrons or positrons at 27.6 GeV and protons at 820 or 920 GeV . Each of the two general purpose experiments H1 and ZEUS collected during 1995-2000 ("HERA I") $\approx 120 p^{-1}$ and during 2003-2007 ("HERA II") $\approx 370 p b^{-1}$. Two kinematic regions have been explored: Deep inelastic scattering (DIS) with photon virtuality $Q^{2}>1 \mathrm{GeV}^{2}$, where the scattered electron is visible in the main detector and photoproduction (PHP) with $<Q^{2}>\approx 3 \cdot 10^{-4} \mathrm{GeV}^{2}$, where the virtual photon radiated from the incoming electron is quasi-real. The sample is dominated by PHP events.

2 Glueball search in the $K_{S}^{0} K_{S}^{0}$ system

Glueballs are predicted by QCD. The lightest glueball is expected to have $J^{P C}=0^{++}$and a mass in the range $1550-1750 \mathrm{MeV}$ [1] and can mix with $q \bar{q}$ scalar meson nonet $\mathrm{I}=0$ states of similar mass. There are four such established states: $f_{0}(980), f_{0}(1370), f_{0}(1500)$ and $f_{0}(1710)$, but only two can fit into the nonet. The $f_{0}(1710)$ state is considered as a possible glueball candidate. The $K_{S}^{0} K_{S}^{0}$ system can couple to $J^{P C}=0^{++}$and 2^{++}. Therefore, it is a good place to search for the lowest lying 0^{++}glueball.

2.1 Previous results

The $e^{+} e^{-}$experiments TASSO and L3 studied the exclusive reaction $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$. L3 [2] saw 3 peaks and attributed them to $f_{2}(1270) / a_{2}(1320), f_{2}^{\prime}(1525)$ and $f_{0}(1710)$. A maximum likelihood fit with 3 Breit-Wigner (BW) functions plus background yielded $f_{2}^{\prime}(1525)$ mass and width values consistent with the Particle Data Group (PDG) [1] and a 4 standard deviation

Resonance Searches at HERA

(s.d.) signal for $f_{0}(1710)$ with mass and width values above PDG. The TASSO [3] $K_{S}^{0} K_{S}^{0}$ spectra had no $f_{2}(1270) / a_{2}(1320)$ signal and a sizable $f_{2}^{\prime}(1525)$ enhancement. The result was interprated by interference effects between the $3 J^{P}=2^{+}$resonances $f_{2}(1270), a_{2}(1320)$ and $f_{2}^{\prime}(1525)$ and the spectra was fitted as a sum of 3 coherent BW functions. Based on $\mathrm{SU}(3)$ symmetry arguments [4], the sign of the $a_{2}(1320)$ term for $K_{S}^{0} K_{S}^{0}$ is negative and the coefficients of the $f_{2}(1270), a_{2}(1320)$ and $f_{2}^{\prime}(1525)$ BW amplitudes are $+5,-3$ and +2 , respectively.

2.2 This analysis

The reaction $e^{ \pm} p \rightarrow K_{S}^{0} K_{S}^{0}+X$ was studied [5] with the full HERA luminosity of 0.5 fb^{-1}. Both PHP and DIS events were included. No explicit trigger requirement was applied for selecting the above reaction.
K_{S}^{0} mesons were identified via their decay mode $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$. A clean K_{S}^{0} signal was seen for events with $\geq 2 K_{S}^{0}$ candidates. The number of $K_{S}^{0} K_{S}^{0}$ pairs found in the K_{S}^{0} mass range $481<M\left(\pi^{+} \pi^{-}\right)<515 \mathrm{MeV}$ is $\approx 672,000$.

Figure 1 shows the $K_{S}^{0} K_{S}^{0}$ mass distribution reconstructed by combining two K_{S}^{0} candidates selected in the above mass window. Three peaks are seen around $1.3,1.5$ and 1.7 GeV . No state heavier than 1.7 GeV was observed. The invariant-mass spectrum, m, was fitted as a sum of relativistic Breit-Wigner (RBW) resonances and a smoothly varying background $U(m)=m^{A} \exp (-B m)$, where A and B are free parameters.

Two types of fit, as performed for the reaction $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$ by L3 [2] and TASSO [3], respectively, were tried. The first fit (not shown) is an incoherent sum of three modified RBW resonances, R, of the form $F(m)=$ $C_{R}\left(\frac{M_{R} \Gamma_{R}}{\left(M_{R}^{2}-m^{2}\right)^{2}+M_{R}^{2} \Gamma_{R}^{2}}\right)$, representing the peaks $f_{2}(1270) / a_{2}(1320), f_{2}^{\prime}(1525)$ and $f_{0}(1710)$. Here C_{R} is the resonance amplitude and M_{R} and Γ_{R} are the resonance mass and width, respectively. The goodness of this fit is reasonable $\left(\chi^{2} / n d f=96 / 95\right)$; however, the dip between the $f_{2}(1270) / a_{2}(1320)$ and $f_{2}^{\prime}(1525)$ is not well reproduced.

Figure 1 shows a coherent fit motivated by $\mathrm{SU}(3)$ predictions[4]. Each resonance amplitude, R, is described by the RBW form [3] $B W(R)=\frac{M_{R} \sqrt{\Gamma_{R}}}{M_{R}^{2}-m^{2}-i M_{R} \Gamma_{R}}$. The decays of the tensor $\left(J^{P}=2^{+}\right)$mesons $f_{2}(1270), a_{2}^{0}(1320)$ and $f_{2}^{\prime}(1525)$ into the two pseudoscalar ($J^{P}=0^{+}$) mesons $K^{0} \bar{K}^{0}$ are related by $\mathrm{SU}(3)$ symmetry with a specific interference pattern. The intensity is the modulus-squared of the sum of these 3 amplitudes plus the incoherent addition of $f_{0}(1710)$ and a non-resonant background.

Assuming $\mathrm{SU}(3)$ symmetry and a direct coupling of the 2^{+}states to the exchanged photon, the fitted function to the $m\left(K_{S}^{0} K_{S}^{0}\right)$ spectra is given by $F(m)=a\left[5 \cdot B W\left(f_{2}(1270)\right)-3\right.$. $\left.B W\left(a_{2}(1320)\right)+2 \cdot B W\left(f_{2}^{\prime}(1525)\right)\right]^{2}+b\left[B W\left(f_{0}(1710)\right)\right]^{2}+c \cdot U(m)$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as well as the

URI Karshon

resonance masses and widths were free parameters in the fit. The background-subtracted mass spectrum is shown in Fig.1(b). The fit quality is good $\left(\chi^{2} / n d f=86 / 97\right)$. The peak around 1.3 GeV is suppressed due to the destructive interference between $f_{2}(1270)$ and $a_{2}(1320)$ and the dip between $f_{2}(1270) / a_{2}(1320)$ and $f_{2}^{\prime}(1525)$ is well reproduced. The number of fitted $f_{0}(1710)$ events is 4058 ± 820, which has ≈ 5 s.d. significance. Its mass is consistent with a $J^{P C}=0^{++}$ glueball candidate, but it cannot be a pure glueball if it is the same state as in $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$.

Fit	No interference		Interference		PDG 2007 Values	
$\chi^{2} / n d f$	96/95		86/97			
in MeV	Mass	Width	Mass	Width	Mass	Width
$f_{2}(1270)$	1304 ± 6	61 ± 11	1268 ± 10	176 ± 17	1275.4 ± 1.1	185.2-2.5
a_{2}^{O} (1320)			1257 ± 9	114 ± 14	1318.3 ± 0.6	107 ± 5
f_{2}^{\prime} (1525)	$1523 \pm 3_{-8}^{+2}$	$71 \pm 5_{-2}^{+17}$	$1512 \pm 3_{-0.6}^{+2}$	$83 \pm 9_{-4}^{+5}$	1525 ± 5	73_{-5}^{+6}
$f_{0}(1710)$	$1692 \pm 6_{-3}^{+9}$	$125 \pm 12_{-32}^{+19}$	$1701 \pm 5_{-3}^{+5}$	$100 \pm 24_{-19}^{+8}$	1724 ± 7	137 ± 8

Table 1: Fitted masses and widths for $f_{2}(1270), a_{2}^{0}(1320), f_{2}^{\prime}(1525)$ and $f_{0}(1710)$ from the incoherent and coherent fits compared to PDG. The first error is statistical. For $f_{2}^{\prime}(1525), f_{0}(1710)$ the second errors are systematic uncertainties.

The masses and widths obtained from both fits are shown in Table 1 and compared to PDG [1]. The no-interference fit yields a narrow width for the combined $f_{2}(1270) / a_{2}(1320)$ peak, as was also seen by L3 [2]. The fit with interference yields widths close to the PDG values for all observed resonances. The $a_{2}^{0}(1320)$ mass is below the PDG value. The $f_{2}^{\prime}(1525)$ and $f_{0}(1710)$ masses are somewhat below PDG with uncertainties comparable with the PDG ones. A fit without $f_{0}(1710)$ is strongly disfavoured with $\chi^{2} / n d f=162 / 97$.

3 Charm pentaquark search

 in the $D^{*} p$ system

A narrow exotic baryon with strangeness +1 around 1530 MeV decaying into $K^{+} n$ or

Figure 2: $M\left(D^{* \pm} p^{\mp}\right)$ from H1 DIS HERA I, compared with fit results where both signal and background components are included and where only background is included. $K^{0} p$ was seen by various experiments and attributed to the $\Theta^{+}=u u d d \bar{s}$ pentaquark state predicted by Diakonov et al.[6]. If a strange pentaquark exists, charmed pentaquarks, $\Theta_{c}^{0}=u u d d \bar{c}$, could also exist. If $M\left(\Theta_{c}^{0}\right)>M\left(D^{*}\right)+M(p)=2948 \mathrm{MeV}$, it can decay to $D^{* \pm} p^{\mp}$.

The H1 Collaboration saw [7] in a DIS HERA I sample of $\approx 3400 D^{* \pm} \rightarrow D^{0} \pi_{S}^{ \pm} \rightarrow K^{\mp} \pi^{ \pm} \pi_{S}^{ \pm}$ a narrow signal of 50.6 ± 11.2 events in the $D^{* \pm} p^{\mp}$ invariant mass at 3.1 GeV (Fig.2) with a

Resonance Searches at HERA

width consistent with the mass resolution and a rate of $\approx 1 \%$ of the visible D^{*} production.
ZEUS searched for a Θ_{c}^{0} signal in the $D^{* \pm} p^{\mp}$ mode with the full HERA I PHP + DIS data sample [8]. Clean $D^{* \pm}$ signals were seen in the $\Delta M=M\left(D^{* \pm}\right)-M\left(D^{0}\right)$ plots. Two $D^{* \pm} \rightarrow D^{0} \pi_{S}^{ \pm}$decay channels were used with $D^{0} \rightarrow K^{\mp} \pi^{ \pm}$and $D^{0} \rightarrow K^{\mp} \pi^{ \pm} \pi^{+} \pi^{-}$. The Θ_{c}^{0} search was performed in the kinematic range $\left|\eta\left(D^{*}\right)\right|<1.6$ and $p_{T}\left(D^{*}\right)>1.35(2.8) \mathrm{GeV}$ and with ΔM values between $0.144-0.147(0.1445-0.1465) \mathrm{GeV}$ for the $K \pi \pi(K \pi \pi \pi \pi)$ channel. In these bands $\approx 62000 D^{*}$'s were obtained after subtracting wrong-charge combinations with charge ± 2 for the D^{0} candidate and ± 1 for the D^{*} candidate. Selecting DIS events with $Q^{2}>1 \mathrm{GeV}^{2}$ yielded smaller, but cleaner D^{*} signals with $\approx 13500 D^{*}$ s.

Protons were selected with momentum $P(p)>0.15 \mathrm{GeV}$. To reduce the pion and kaon background, a parameterisation of the expected $d E / d x$ as a function of P / m was obtained using tagged protons from Λ decays and tagged pions from K_{S}^{0} decays. The χ^{2} probability of the proton hypothesis was required to be above 0.15 .

Figure 3 shows the $M\left(D^{* \pm} p^{\mp}\right)$ distributions for the $D^{0} \rightarrow K \pi$ (left) and $D^{0} \rightarrow$ $K \pi \pi \pi$ (right) channels for the full (up) and the DIS (down) samples. No narrow signal is seen in any of the distributions. 95% C.L. upper limits on the fraction of D^{*} mesons originating from Θ_{c}^{0} decays, $R\left(\Theta_{c}^{0} \rightarrow D^{*} p / D^{*}\right)$, were calculated in a signal window $3.07<$ $M\left(D^{*} p\right)<3.13 \mathrm{GeV}$ for the $K \pi \pi$ and $K \pi \pi \pi \pi$ channels. The $M\left(D^{*} p\right)$ distributions were fitted to the form $x^{a} e^{-b x+c x^{2}}$, where $x=$ $M\left(D^{*} p\right)-M\left(D^{*}\right)-m_{p}(P D G)$. The number of reconstructed Θ_{c}^{0} baryons was estimated by subtracting the background function from the observed number of events in the signal window, yielding $R\left(\Theta_{c}^{0} \rightarrow D^{*} p / D^{*}\right)<0.23 \%$ and $<0.35 \%$ for the full and DIS combined

Figure 3: $M\left(D^{* \pm} p^{\mp}\right)$ from ZEUS HERA I. Solid curves are fits to a background function. Shaded historgams are MC Θ_{c}^{0} signals, normalised to $\Theta_{c}^{0} / D^{*}=1 \%$, on top of the background fit. two channels. A visible rate of 1% for this fraction is excluded by 9 s.d. (5 s.d.) for the full (DIS) combined sample. The acceptancecorrected rates are, respectively, 0.37% and 0.51%. The 95% C.L. upper limit on the fraction of charm quarks fragmenting to Θ_{c}^{0} times the branching ratio $\Theta_{c}^{0} \rightarrow D^{*} p$ for the combined two channels is $f\left(c \rightarrow \Theta_{c}^{0}\right) \cdot B_{\Theta_{c}^{0} \rightarrow D^{*} p}<0.16 \%(<0.19 \%)$ for the full (DIS) sample.

In a HERA II DIS data sample that is ≈ 4 times larger than the HERA I sample, H1 does not see any significant peak at 3.1 GeV (Fig.4). A preliminary 95% C.L. for the ratio of $D^{*} p$ to D^{*} is 0.1%.

4 Excited charm and charm-strange mesons

The large charm production at HERA allows to search for excited charm states. ZEUS studied the orbitally excited states $D_{1}(2420)^{0} \rightarrow D^{* \pm} \pi^{\mp}\left(J^{P}=1^{+}\right), D_{2}^{*}(2460)^{0} \rightarrow D^{* \pm} \pi^{\mp}, D^{ \pm} \pi^{\mp}$
$\left(J^{P}=2^{+}\right)$and $D_{s 1}(2536)^{ \pm} \rightarrow D^{* \pm} K_{S}^{0}, D^{* 0} K^{ \pm}\left(J^{P}=1^{+}\right)$and searched for the radially excited state $D^{*^{\prime}}(2640)^{ \pm} \rightarrow D^{* \pm} \pi^{+} \pi^{-}\left(J^{P}=1^{-}\right.$?) with a HERA I PHP + DIS sample[9].

A large sample of events has been collected with the ground state charm mesons $D^{* \pm}, D^{0}, D^{ \pm}$. The number of $D^{* \pm}$ mesons was obtained by subtracting the wrong charge background. The number of $D^{ \pm} \rightarrow K^{\mp} \pi^{ \pm} \pi^{ \pm}$ and $D^{0}\left(\bar{D}^{0}\right) \rightarrow K^{\mp} \pi^{ \pm}$was extracted from fits to a modified Gauss function, Gauss ${ }^{\bmod } \sim \exp \left(-0.5 x^{1+\frac{1}{(1+0.5 x)}}\right)$, where $x=\left(M-M_{D}\right) / \sigma$, plus a background function. For the D^{*}, both D^{0} decay modes to $K \pi$ and $K \pi \pi \pi$ were used.

4.1 Excited charm mesons

To reconstruct the excited charm mesons, a $D^{* \pm}$ or $D^{ \pm}$candidate was combined with a pion of opposite charge, π_{a}. Figure 5 shows the "extended" mass difference distributions $M\left(D^{* \pm} \pi_{a}\right)$ $M\left(D^{* \pm}\right)+M\left(D^{*}\right)_{P D G}$ (upper plot) and $M\left(D^{ \pm} \pi_{a}\right)-M\left(D^{ \pm}\right)+M(D)_{P D G}$ (lower plot). A clear excess is seen in $M\left(D^{* \pm} \pi_{a}^{\mp}\right)$ around the $D_{1}^{0} / D_{2}^{* 0}$ mass region. A small excess near the $D_{2}^{* 0}$ mass is seen in $M\left(D^{ \pm} \pi_{a}^{\mp}\right)$. No excess is seen for wrong charge combinations, where $D^{*}(D)$ and π_{a} have the same charge.

To distinguish between the D_{1}^{0} and $D_{2}^{* 0}$, the helicity angular distribution, parametrised as $d N / d \cos \alpha \approx 1+$ $h \cos ^{2} \alpha$, was used. Here α is the angle between the π_{a} and π_{S} momenta in the D^{*} rest frame. The helicity parameter h is predicted [10] to be $3(-1)$ for pure D-wave $D_{1}^{0}\left(D_{2}^{* 0}\right)$.

Figure 6 shows the $D^{* \pm} \pi_{a}$ "extended" mass difference in 4 helicity

Figure 4: $M\left(D^{* \pm} p^{\mp}\right)$ from H1 DIS HERA II. The solid line is a background parametrisation.

Figure 5: $M\left(D^{* \pm} \pi_{a}\right)$ and $M\left(D^{ \pm} \pi_{a}\right)$ distributions. Solid curves are simultaneous fit; dashed curves are background; histograms are wrong-charge combinations. $|\cos \alpha|$ intervals. The D_{1}^{0} contribution increases with $|\cos \alpha|$ and dominates for $|\cos \alpha|>0.75$. A simultaneous fit was performed to the 4 helicity regions of Fig. 6 and to the $M(D \pi)$ distribution of Fig.5. The data is described well with 15 free parameters (signal yields, masses, D_{1}^{0} width and helicity). The fitted masses agree with PDG. The fitted D_{1}^{0} width is $53.2 \pm 7.2(\text { stat. })_{-4.9}^{+3.3}$ (syst.) MeV compared to $20.4 \pm 1.7 \mathrm{MeV}$ of PDG. The fitted D_{1}^{0} helicity $\left(5.9_{-1.7}^{+3.0}(\text { stat. })_{-1.0}^{+2.4}(\right.$ syst. $\left.)\right)$ is consistent with a pure D-wave.

Resonance Searches at HERA

4.2 Excited charm strange mesons

To reconstruct the $D_{s 1}^{ \pm} \rightarrow D^{* \pm} K_{S}^{0}$ decays, a $D_{s 1}^{ \pm}$candidate was formed by combining a D^{*} candidate with a reconstructed K_{S}^{0} of the same event. Figure 7 (upper plot) shows the "extended" mass difference distribution $M\left(D^{* \pm} K_{S}^{0}\right)-M\left(D^{* \pm}\right)+M\left(D^{*}\right)_{P D G}+M\left(K^{0}\right)_{P D G}$. A clear $D_{s 1}(2536)^{ \pm}$signal is seen. The decay mode $D_{s 1}^{ \pm} \rightarrow D^{* 0} K^{ \pm}$is reconstructed from the "extended" mass difference $M\left(D^{0} K_{a}\right)-M\left(D^{0}\right)+M\left(D^{0}\right)_{P D G}$. A nice $D_{s 1}^{ \pm}$signal is seen (Figure 7 lower plot) at a mass shifted down by $\approx 142 \mathrm{MeV}$ from the $D_{s 1}^{ \pm}$mass. The signal is a feeddown from $D_{s 1}^{ \pm} \rightarrow D^{* 0} K^{ \pm}$with $D^{* 0} \rightarrow D^{0} \pi^{0}, D^{0} \gamma$. An unbinned likelihood fit was performed using simultaneously values of $M\left(D^{0} K_{a}\right), M\left(D^{* \pm} K_{S}^{0}\right)$ and $\cos \alpha$ for the $D^{* \pm} K_{S}^{0}$ combinations. Yields and widths of both signals and the $D_{s 1}^{ \pm}$mass and helicity parameter were free parameters of the fit. The fitted $D_{s 1}$ helicity parameter is $h\left(D_{s 1}^{ \pm}\right)=-0.74_{-0.17}^{+0.23}(\text { stat. })_{-0.05}^{+0.06}($ syst. $)$. It is inconsistent with a pure $J^{P}=1^{+}$D-wave and is barely consistent with a pure $J^{P}=1^{+}$S-wave, indicating a significant $S-D$ mixing.

The helicity angular distribution form of a 1^{+}state for any D - and S -wave mixing is: $d N / d \cos \alpha \approx r+(1-r)\left(1+3 \cos ^{2} \alpha\right) / 2+\sqrt{2 r(1-r)} \cos \phi\left(1-3 \cos ^{2} \alpha\right)$, where $r=\Gamma_{S} /\left(\Gamma_{S}+\Gamma_{D}\right)$, $\Gamma_{S / D}$ is the S / D wave partial width and ϕ is relative phase between the 2 amplitudes, $\cos \phi=$ $\frac{(3-h) /(3+h)-r}{2 \sqrt{2 r(1-r)}}$. Figure 8 shows a range, restricted by the measured $h\left(D_{s 1}^{ \pm}\right)$value and its uncertainties, in a plot of $\cos \phi$ versus r. The measurement suggests a significant contribution of both D- and S-wave amplitudes to the $D_{s 1}(2536)^{ \pm} \rightarrow D^{* \pm} K_{S}^{0}$ decay. The ZEUS range agrees nicely with the BELLE result and roughly with the CLEO measurement.

Figure 7: $M\left(D^{* \pm} K_{S}^{0}\right)$ and $M\left(D^{0} K^{ \pm}\right)$distributions. Solid curves are simultaneous fit; dashed curves are background.

Figure 6: $M\left(D^{* \pm} \pi_{a}\right)$ distributions in 4 helicity intervals.

5 Branching ratios and fragmentation fractions

Using the ZEUS measured fractions $f\left(c \rightarrow D^{*+}\right)$
and $f\left(c \rightarrow D^{+}\right)[11]$, the following decay rate ratios were derived: $\frac{B_{D_{2}^{* 0} \rightarrow D^{+} \pi^{-}}}{B_{D_{2}^{*} 0} D^{*+\pi^{-}}}=$ $2.8 \pm 0.8_{-0.6}^{+0.5}(\mathrm{PDG}: 2.3 \pm 0.6) ; \frac{B_{D_{s_{1} \rightarrow D^{*}}^{+} K^{+}}^{+}}{B_{D_{s 1} \rightarrow D^{*+} K^{0}}^{+}}=$ $2.3 \pm 0.6 \pm 0.3$ (PDG: 1.27 ± 0.21).

Assuming isospin conservation for D_{1}^{0} and $D_{2}^{* 0}$ and $B_{D_{s 1}^{+} \rightarrow D^{*+} K^{0}}+B_{D_{s 1}^{+} \rightarrow D^{* 0} K^{+}}=1$ yields a strangeness suppression of excited D mesons $f\left(c \rightarrow D_{s 1}^{+}\right) / f\left(c \rightarrow D_{1}^{0}\right)=0.31 \pm$ 0.06 (stat. $)_{-0.04}^{+0.05}($ syst.).

In Table 2 the ZEUS fragmentation fractions of the excited charm mesons are compared with $e^{+} e^{-}$values. The results are consistent within errors.

DELPHI saw a narrow peak in $D^{* \pm} \pi^{+} \pi^{-}$ at 2637 MeV [12] and attributed it to a radially excited $D^{*^{\prime} \pm}$. No signal was seen in ZEUS and a 95% C.L. upper limit of $f(c \rightarrow$ $\left.D^{*^{\prime} \pm}\right) \cdot B_{D^{* \prime} \pm \rightarrow D^{*+} \pi^{+} \pi^{-}}<0.4 \%$ was set, compared to the weaker limit of OPAL (0.9\%) [13].

	$f\left(c \rightarrow D_{1}^{0}\right)[\%]$	$f\left(c \rightarrow D_{2}^{* 0}\right)[\%]$	$f\left(c \rightarrow D_{s 1}^{+}\right)[\%]$
ZEUS	$3.5 \pm 0.4_{-0.6}^{+0.4}$	$3.8 \pm 0.7_{-0.6}^{+0.5}$	$1.11 \pm 0.16_{-0.10}^{+0.08}$
OPAL	2.1 ± 0.8	5.2 ± 2.6	$1.6 \pm 0.4 \pm 0.3$
ALEPH			$0.94 \pm 0.22 \pm 0.07$

Table 2: The fractions of c quarks hadronising into $D_{1}^{0}, D_{2}^{* 0}$ and $D_{s 1}^{+}$mesons.

References

[1] Particle Data Group, W.M. Yao et al., J. Phys. G C33 1 (2006). Updated in http://pdg.lbl.gov.
[2] L3 Collaboration, M. Acciarri et al., Phys. Lett. B501 173 (2001).
[3] TASSO Collaboration, M. Althoff et al., Phys. Lett. B121 216 (1983).
[4] D. Faiman, H.J. Lipkin and H.R. Rubinstein, Phys. Lett. B59 269 (1975).
[5] ZEUS Collaboration, S. Chekanov et al., Phys. Rev. Lett. 101112003 (2008).
[6] D. Diakonov et al., Z. Phys. A359 305 (1997).
[7] H1 Collaboration, A. Aktas et al., Phys. Lett. B588 17 (2004).
[8] ZEUS Collaboration, S. Chekanov et al., Eur. Phys. J. C38 29 (2004).
[9] ZEUS Collaboration, S. Chekanov et al., Eur. Phys. J. C60 25 (2009).
[10] N. Isgur and M.B. Wise, Phys. Lett. B232 113 (1989); M. Neubert, Phys. Rep. 245259 (1994).
[11] ZEUS Collaboration, S. Chekanov et al., Eur. Phys. J. C44 351 (2005).
[12] DELPHI Collaboration, P. Abreu et al., Phys. Lett. B426 231 (1998).
[13] OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C20 445 (2001).

