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We review the descriptions of hard exclusive processes based on QCD factorization.

1 Introduction

Since a decade, there have been much developments in hard exclusive processes, based on
collinear factorization. This was initiated by form factors studies more than 30 years ago,
leading to the concept of Distribution Amplitudes (DA) [1], which describes the partonic content
of a hadron facing an elastic scattering off a hard photonic probe. These DAs were then
extended to Generalized Distribution Amplitudes (GDA) [2, 3, 4] in which two or more hadrons
are produced. Independently, starting from inclusive DIS which relates Parton Distribution
Functions (PDFs) to the discontinuity of the forward γ∗p→ γ∗p amplitude, it was shown [5, 3]
that the partonic interpretation remains valid for the Deep Virtual Compton Scattering (DVCS)
amplitude γ∗p→ γ p itself, leading to the concept of Generalized Parton Distributions (GPDs),
and to more general exclusive processes studies. In a parallel way, tremendous progresses in
experimental facilities (high luminosity beams, improvement of detectors...) opened the way to
studies and measures with increasing precision of these non forward matrix elements [6, 7, 8, 9].

2 The illuminating example of ρ−electroproduction

DVCS and GPD [10]

The factorization of the DVCS amplitude in the large Q2 limit follows two steps. First, one
should factorize it in momentum space. This can be set up more easily when using the Sudakov
decomposition (introducing two light-cone vectors p1(2) (+(−) directions) with 2 p1 · p2 = s)

k = αp1 + β p2 + k⊥
+ − ⊥ (1)

In the limit Q2 → ∞, the only component of the momentum k to be kept in the hard blob H
is k− . In particular, this means that the quark-antiquark pair entering H can be considered as
being collinear, flying in the direction of the p2 momentum. Therefore, the amplitude reads
∫
d4k S(k, k + ∆)H(q, k, k + ∆) =

∫
dk−

∫
dk+d2k⊥ S(k, k + ∆) H(q, k−, k− + ∆−) ,

as illustrated in Fig.1. The Fierz identity in spinor and color space then shows that the DVCS
amplitude completely factorizes, and reads symbolically: M = GPD⊗Hard part .
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Figure 1: Factorization of the DVCS amplitude in the hard regime. The signs + and − indicate
corresponding flows of large momentum components.

ρ−meson production: from the wave function to the DA
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Figure 2: Factorization of the amplitude of hard ρ−electroproduction.

We now replace the produced photon by a ρ−meson, described in QCD by its wave function
Ψ which reduces in hard processes to its Distribution Amplitude. As for DVCS, in the limit
Q2 →∞ , the amplitude of diffractive electroproduction of a ρ−meson can be written as

∫
d4` M(q, `, `−pρ) Ψ(`, `−pρ) =

∫
d`+M(q, `+, `+ − p+

ρ )

∫
d`−
|`2⊥| < µ2

F∫
d2`⊥Ψ(`, `− pρ) (2)

(see Fig.2). This factorization involves the ρ−wave function integrated over `⊥ (and `−), which
is the DA already involved in the partonic description of the hard meson form factor [1].

ρ−meson production: factorization with a GPD and a DA [11]

Combining the previous factorizations, one can describe the hard electroproduction of a
ρ−meson in a fully factorized form involving a GPD and a DA, as illustrated in Fig.3. It reads

∫
d4k d4` S(k, k + ∆)H(q, k, k + ∆) Ψ(`, `− pρ) =

∫
dk−d`+ (3)

×
∫
dk+

|k2
⊥| < µ2

F2∫
d2k⊥ S(k, k + ∆) H(q; k−, k−+ ∆−; `+, `+− p+

ρ )

∫
d`−

|`2⊥| < µ2
F1∫
d2`⊥Ψ(`, `− pρ) .

GPD F (x, ξ, t, µ2
F2

) Hard part T (x/ξ, u, µ2
F1
, µ2
F2

) DA Φ(u, µ2
F1

)
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Figure 3: Full factorization of the amplitude of hard electroproduction of a ρ−meson.

Chiral-even DA

As discussed above, DAs are obtained from wave functions through
∫
d`−

∫
d2`⊥ integration,

and thus related to non-local correlators between fields separated by a light-like distance z (along
p2, conjugated to the + direction by Fourier transformation). The vector correlator reads

〈0|ū(z)γµd(−z)|ρ−(P, λ)〉 = fρmρ

[
pµ
e(λ) · z
p · z

∫ 1

0

du ei(u−ū)p·zφ‖(u, µ
2
F )

+ e
(λ)
⊥µ

∫ 1

0

du ei(u−ū)p·zg(v)
⊥ (u, µ2

F )− 1

2
zµ
e(λ) · z
(p · z)2

m2
ρ

∫ 1

0

du ei(u−ū)p·zg3(u, µ2
F )

]

where φ‖, g
(v)
⊥ , g3 are DAs respectively of twist 2, 3 and 4, with p = p1, P = pρ . Correspond-

ingly, the axial correlator calls for the introduction of a twist 3 DA, as

〈0|ū(z)γµγ5d(−z)|ρ−(P, λ)〉 =
1

2

[
fρ − fTρ

mu +md

mρ

]
mρ ε

ναβ
µ e

(λ)
⊥ν pα zβ

∫ 1

0

du eiξp·zg(a)
⊥ (u, µ2

F ) .

Selection rules and factorization status

Since for massless particle chirality = + (resp. -) helicity for a (anti)particule and based on
the fact that QED and QCD vertices are chiral even (no chirality flip during the interaction),
one deduces that the total helicity of a qq̄ pair produced by a γ∗ should be 0. Therefore, the
helicity of the γ∗ equals Lqq̄z (z projection of the qq̄ angular momentum). In the pure collinear
limit (i.e. twist 2), Lqq̄z = 0, and thus the γ∗ is longitudinally polarized. Additionaly, at
t = 0 there is no source of orbital momentum from the proton coupling, which implies that
the helicity of the meson and of the photon should be identical. In the collinear factorization
approach, the extension to t 6= 0 changes nothing from the hard side, the only dependence with
respect to t being encoded in the non-perturbative correlator which defines the GPDs. This
implies that the above selection rule remains true. Thus, only 2 transitions are possible (this is
called s−channel helicity conservation (SCHC)): γ∗L → ρL, for which QCD factorization holds
at t=2 at any order (i.e. LL, NLL, etc...) [11] and γ∗T → ρT , corresponding to twist t = 3 at
the amplitude level, for which QCD factorization is not proven, an explicit computation [12] at

leading order showing in fact that the hard part has end-point singularities like
1∫
0

du/u .
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Some solutions to factorization breaking?

In order to extend the factorization theorem at higher twist, several solutions have been
discussed. First, one may add contributions of 3-parton DAs [13] for ρT [14, 15] (of dominant
twist equal 3 for ρT ). This in fact does not solve the problem, while reducing the level of
divergency, but is needed for consistency. Next, it was suggested to keep a transverse `⊥ depen-
dency in the q, q̄ momenta, used to regulate end-point singularities, leading to the Improved
Collinear Approximation (ICA). Soft and collinear gluon exchange between the valence quarks
are responsible for large double-logarithmic effects which exponentiate. This is made easier
when using the impact parameter space b⊥ conjugated to `⊥ , leading to Sudakov factor

exp[−S(u, b,Q)] .

S diverges when b⊥ ∼ O(1/ΛQCD) (large transverse separation, i.e. small transverse momenta)
or u ∼ O(ΛQCD/Q) [16]. This regularizes end-point singularities for π → πγ∗ and γγ∗ → π0

form factors [17]. This perturbative resummation tail effect combined with an ad-hoc non-
perturbative gaussian ansatz for the DAs

exp[−a2 |k2
⊥|/(uū)] ,

which gives back the usual asymptotic DA 6u ū when integrating over k⊥, provides practical
tools for the phenomenology of meson electroproduction [18].

Chiral-odd sector

The ± chiralities are defined by the decomposition

q±(z) ≡ 1

2
(1± γ5)q(z) with q(z) = q+(z) + q−(z) ,

implying that q̄±(z)γµq±(−z) or q̄±(z)γµγ5q±(−z) conserve chirality (chiral-even) while q̄±(z) ·
1·q∓(−z), q̄±(z)·γ5 ·q∓(−z) or q̄±(z)[γµ, γν ]q∓(−z) change chirality (chiral-odd). In the specific
case of ρ, the chiral odd sector involves DAs of twists 2 and 4 for ρT and DAs of twist 3 for ρL .
Correspondingly, chiral-odd 3-partons DAs are of dominant twist equal to 3 for ρL [13].

Since QED and QCD are chiral even, chiral-odd objects can only appear in pairs. While the
amplitude of ρT electroproduction on linearly polarized N vanishes at leading twist 2 (a single
gluon exchange between hard lines is not enough to prevent the vanishing of Dirac traces) [19],
this vanishing can be avoided [20], for example in the electroproduction of a π+ and ρ0

T pair on
a nucleon N [21], the hard scale being provided by the pT of the produced mesons.

3 Generic results for DAs

Gauge invariance

The non-local correlators 〈0|Ψ̄(z)γµΨ(−z)|ρ〉 are gauge invariant since they should be un-
derstood as 〈0|Ψ̄(z)γµ[z, −z ]Ψ(−z)|ρ〉 where [, ] is a Wilson line along p2 . This implies that
even at twist 2, gluons are there, although hidden. The Taylor expansion with respect to z

involves the covariant derivative
↔
Dµ . This can be used for studying hard electroproduction

of exotic (non qq̄ quantum numbers) hybrids mesons |qq̄g〉 with JPC = 1−+ which cannot be
described by the quark model. Thus, γ∗p→ H0p is not suppressed: it is twist 2. The expected
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order of magnitude of the cross-section is comparable with ρ-electroproduction [22], with possi-
ble tests at JLab and Compass. The same conclusion applies for the process γγ∗ → H0 with the
advantage of avoiding the mixing with GPDs [23]. Tests should be possible at BaBar, BELLE,
BEPC-II. A possible candidate for the neutral hybrid H0 could be the π1(1400) .

Equations of motion

The Dirac equation leads to 〈i(
→
/D (0)ψ(0))α ψ̄β(z)〉 = 0 which, after applying the Fierz de-

composition to 2 and 3-parton correlators, implies Equations Of Motion (EOM) relating the
various 2 and 3-body DAs.

Renormalization group equations

Back to the factorization (2) or (3) of the process in term of a DA, which symbolically reads

M(Q2) = Φ∗(x, µ2
F ) ⊗ TH(x,Q2, µ2

F ) , (4)

the arbitrariness of the factorization scale µ2
F leads to the Efremov-Radyushkin, Brodsky-Lepage

equation [24] for the DA Φ(u, µ2
F ):

µ2
F

∂

∂µ2
F

Φ(x, µ2
F ) = V (x, u, µ2

F ) ⊗ Φ(u, µ2
F ) .

Collinear conformal invariance [25]

The full conformal group SO(4, 2) is defined as transformations which only change the
scale of the metric. In the limit Q2 →∞ , hadron states are replaced by a bunch of partons
that are collinear to p1, which thus lives along p2 , implying that z is the only remaining
variable. The transformations which map the light-ray in the p2 direction into itself is the
collinear subgroup of the full conformal group SO(4, 2) , that is SL(2,R), made of translations
z → z + c, dilatations z → λ z and special conformal transformations z → z ′ = z/(1 + 2 a z) .
The Lie algebra of SL(2,R) is O(2, 1) . One remaining additional generator commutes with
the 3 previous ones: the collinear-twist operator. Interestingly, the light-cone operators which
enter the definition of DAs can be expressed in terms of a basis of conformal operators. Since
conformal transformations commute with exact EOM (they are not renormalized), EOM can
be solved exactly (with an expansion in terms of the conformal spin n + 2). For example the

twist 2 DA for ρL can be expressed, for unpredicted a
‖
n(µ), as [26]

φ‖(u, µ0) = 6u ū
∞∑

n=0

a‖n(µ)C3/2
n (u− ū) C3/2

n = Gegenbauer polynomial .

Since the Leading Order renormalization of the conformal operators is diagonal in the conformal
spin (counterterms are tree level at this accuracy and they thus respect the conformal symetry
of the classical theory), this implies that

φ‖(u, µ) = 6u ū

∞∑

n=0

a‖n(µ0)

(
αs(µ)

αs(µ0)

)γ(0)
n /β0

C3/2
n (u− ū)

µ→∞−→ 6u ū asymptotic DA

with the anomalous dimensions

γ(0)
n = CF

(
1− 2

(n+ 1)(n+ 2)
+ 4

n+1∑

m=2

1

m

)
.
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Figure 4: kT -factorization in the case of γ∗ γ∗ → ρ ρ.

At Next to Leading Order conformal symetry is broken; studying conformal anomalies provides
the NLO anomalous dimensions and the corresponding ERBL kernels [27].

4 The specific case of QCD at large s

Theoretical motivations and kT -factorization

The dynamics of QCD in the perturbative Regge limit is governed by gluons (dominance of
spin 1 exchange in t channel). The BFKL Pomeron (and extensions: NLL, saturations effects,
...) is expected to dominate with respect to Born order at large relative rapidity in any diffractive
or inclusive process. In this regime, the key tool is the kT -factorization, shown in Fig.4 in the
case of γ∗ γ∗ → ρ ρ. Using the Sudakov decomposition (1) for which d4k = s

2 dα dβ d
2k⊥ and

noting that t−channel gluons with non-sense polarizations (ε
up/down
NS = 2

s p2 /1) dominate at
large s, and then rearranging the k-integration (see Fig.4) leads to the impact representation

M = is

∫
d2 k

(2π)2k2 (r − k)2
Φγ
∗(q1)→ρ(pρ1)(k, r − k) Φγ

∗(q2)→ρ(pρ2 )(−k,−r + k) (5)

where Φγ
∗(q)→ρ(pρ) is the γ∗L,T (q) g(k1)→ ρL,T (pρ) g(k2) impact factor (with k2

⊥ = −k2). QCD
gauge invariance implies, for colorless probes, that the impact factor should vanish when k → 0
or r− k → 0. In particular, at twist 3 level (for γ∗T → ρT transition), gauge invariance is a non-
trivial statement which requires 2- and 3-parton correlators. Recently, HERA provided data
for vector mesons with detailled polarization studies, in particular for our example γ∗L,T + p→
ρL,T + p [9]. It exhibits a total cross-section which strongly decreases with Q2, with a dramatic
increase with W 2 = sγ∗P . The transition from soft to hard regime is governed by Q2. The
transitions γ∗L → ρL, γ∗T (−) → ρT (−) and γ∗T (+) → ρT (+) dominate with respect to any other
possible transition, as expected from SCHC discussed above. In particular at t = tmin one can
experimentally distinguish two transitions: γ∗L → ρL which dominate (twist 2 dominance) and
the γ∗T (±) → ρT (±) which is sizable, although of twist 3. This calls for detailled studies beyond
the applicability of the collinear factorization theorem.

Phenomenological applications: meson production at HERA

The production of mesons in diffraction-type experiments at HERA has been studied exten-
sively in various situations [9, 8]. In the safe case, like J/Ψ photoproduction, collinear factor-
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ization holds and combined with kT -factorization a consistent description of H1 and ZEUS data
was obtained [28, 29]. In the more intricate case of exclusive light vector meson (ρ, φ) photo-
production at large t, relying on kT -factorization, one can describe H1 and ZEUS data, which
seem to favor BFKL [29, 30]. One needs to regularize end-point singularities for ρT , using for
example a quark mass m = mρ/2 , and a rather poor understanding of the whole spin density
matrix has been achieved. The exclusive vector meson electroproduction γ∗L,T + p→ ρL,T + p
has been described [18] based on the ICA for DA coupling and collinear factorization with
GPDs, as explained above, without any use of kT factorization. However, it turns out that at
moderate value of s, HERMES [8] measured the interference phase between L→ L and T → T
transitions which cannot be described within perturbative QCD at the moment.

A full twist 3 treatment of ρ-electroproduction in kT -factorisation is possible [31]. It relies
on the computation of the γ∗T → ρT impact factor at twist 3 including consistently all twist
3 contributions, i.e. 2-parton and 3-parton correlators. This gives a gauge invariant impact
factor, and an amplitude which is free of end-point singularities due to the presence of kT .

Exclusive processes at Tevatron, RHIC, LHC, ILC

Exclusive γ(∗)γ(∗) processes are golden places for testing QCD at large s, in particular
at Tevatron, RHIC, LHC and ILC. Several proposals in order to test perturbative QCD in
the large s limit (t-structure of the hard Pomeron, saturation, Odderon...) have been made,
including γ(∗)(q) + γ(∗)(q′)→ J/Ψ J/Ψ [32], or γ∗L,T (q) + γ∗L,T (q′)→ ρL(p1) + ρL(p2) process

in e+ e− → e+ e−ρL(p1) + ρL(p2) with double tagged lepton at ILC [33, 34]. This could be
feasible at ILC (high energy and high luminosity), with an expected BFKL NLL enhancement
with respect to Born and DGLAP. The elusive Odderon (C-parity of Odderon = -1) is hard to
reveal directly when entering in the amplitude of a process. When considering processes where
it enters linearly, through interference with the Pomeron, the signal becomes more favorable
[35], as in γ + γ → π+π−π+π−: a π+π− pair has no fixed C-parity, allowing for both Odderon
and Pomeron exchange, which can interfere in the charge asymmetry [36]. More generally
exclusive ultraperipheral processes are very promising.

5 Light-Cone Collinear Factorization
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Figure 5: Factorization of 2-parton contributions in the example of the γ∗ → ρ impact factor.

There are basically two ways of dealing with collinear factorization when including higher
twist corrections. The Light-Cone Collinear Factorization developped first for polarized DIS
[37], is self-consistent for exclusive processes [38, 39], while non-covariant, and very efficient
for practical computations [31]. Using the Sudakov decomposition (p = p1, n = 2 p2/s thus
p · n = 1)

`µ = u pµ + `⊥µ + (` · p)nµ, u = ` · n

scaling: 1 1/Q 1/Q2
(6)
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one decomposes H(k) around the p direction:

H(`) = H(u p) +
∂H(`)

∂`α

∣∣∣∣
`=up

(`− u p)α + . . . with (`− u p)α ≈ `⊥α

from which the twist 3 term l⊥α turns after Fourier transform into the derivative of the soft

term
∫
d4z e−i`·z〈ρ(p)|ψ(0) i

←→
∂α⊥ψ̄(z)|0〉 . Using the Fierz transformation, this gives finally a

factorized expression up to twist 3, as illustrated in Fig.5 for 2-parton contributions in the
example of the γ∗ g → ρ g impact factor. This requires the parametrization of matrix elements
of non-local correlators defined along the light-like prefered direction z = λn conjugated to p.
In the case of the ρ-electroproduction, 7 DAs at twist 3 (2- and 3-parton DAs) are needed. Their
number is reduced to a minimal set of 3 DAs when combining the 2 equations of motions and
the n−independency condition [37, 38, 39, 14] of the full factorized amplitude (which provides
2 process-independent equations). A second approach, the Covariant Collinear Factorization
[13], fully covariant but less convenient when practically computing coefficient functions, can
equivalently be used. The dictionary and equivalence between the two approaches has recently
been obtained, and explicitly checked for the γ∗T → ρT impact factor at twist 3 [31].

6 Conclusion

Since a decade, there has been much progress in the understanding of hard exclusive processes:
at moderate energies, combined with GPDs, there is now a framework starting from first prin-
ciples to describe a huge number of processes; at high energy, the impact representation is a
powerful tool for describing exclusive processes in diffractive experiments, which are and will
be essential for studying QCD in the hard Regge limit (Pomeron, Odderon, saturation...). Still,
some problems remain: proofs of factorization have been optained only for a very few processes
(ex.: γ∗ p→ γ p , γ∗L p→ ρL p , γ

∗p → J/Ψ p). For some other processes factorization is highly
plausible, but not fully demonstrated at any order (ex.: processes involving Transition Distri-
bution Amplitudes [40]) while some processes explicitly show signs of breaking of factorization
(ex.: γ∗T p→ ρT p which has end-point singularities at Leading Order). Models and results from
the lattice for the non-perturbative correlators entering GPDs, DAs, GDAs, TDAs are needed,
even at a qualitative level. The effect of QCD evolution and renormalization/factorization
scale, as well as studies at the full NLL order, might be relevant with the increasing precision
of data in the near future. Finally, let us insist on the fact that links between theoretical and
experimental communities are very fruitful, in particular at HERA, Jlab, Compass. It is now
time to use the potential of high luminosity e+e− machine like BaBar, BELLE, BEPC-II which
are golden places for hard exclusive processes studies in γ∗γ(∗) channels.
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