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The possible masses and kinetic mixings of hidden U(1)s in the LARGE volume scenario
are discussed, including the generalisation of the compact manifold to a K3 fibration.

1 Introduction

Many of the talks at PATRAS 2009 (for example that of A. Linder) described laboratory exper-
iments capable of detecting light hidden U(1)s; others (e.g. J. Redondo) discussed astrophysical
and cosmological searches. As reviewed by J. Conlon, string compactifications generically give
additional hidden gauge sectors, in particular hidden U(1)s. This contribution aims to review
how hidden U(1)s arise in LARGE volume string compactifications [1] and their likely masses
and interactions with the visible sector particles [2].

The LARGE volume scenario involves IIB string theory compactified on a Calabi-Yau man-
ifold having volume V of the form

V = τ
3/2
b − h(τi) or V = τ

1/2
b′ τb − h(τi),

where h is a function of τi, the Kähler moduli of “small” cycles; and τb is the modulus corre-
sponding to a large cycle. The first case corresponds to a “swiss cheese” manifold; the second
is the generalisation to a K3 fibration where now τb′ represents the K3 fibre modulus.

One small cycle contributes a non-perturbative superpotential and this leads to the stabil-
isation of the Kähler moduli at a non-supersymmetric minimum, provided that the complex
structure moduli have first been stabilised by three-form fluxes and that there are more com-
plex structure moduli than Kähler moduli. The volume is stabilised at a large value; as high
as 5 × 1027 (in units of the string length) for TeV scale strings, 5 × 1013 for an intermediate
string scale Ms ∼ 1010 GeV, or ∼ 50 for GUT scale strings. The standard model is realised
upon D7-branes wrapping some of the small cycles.

In this scenario there are three classes of candidates for light U(1)s. One such class are from
(closed) Ramond-Ramond strings [3], counted by the number of complex structure moduli.
These may kinetically mix [4] with the hypercharge, but they have no matter charged under
them, and since the LARGE volume scenario involves compactification on a Kähler manifold
they do not have any axionic couplings and are therefore massless. Therefore they can only be
detected by production of their gauginos [5].

We shall instead focus upon the open string U(1)s supported on branes, which may have
masses and charged matter. For these U(1)s wrapping a cycle τi the gauge coupling is given
by g−2

i = τi
2πgs

. For branes wrapping small cycles these give gauge couplings of the same order
as the hypercharge, but if the brane wraps the large cycle τb, then the gauge coupling will be
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hyperweak with g−2
b ∼ V2/3

2πgs
. In the case of a K3 fibration this can be even smaller; if τb′ ≪ τb

then we can in principle approach g−2
b ∼ V

2πgs
(although we require τb′ ≫ τi).

2 Kinetic Mixing

If we assume that the additional U(1)s are hidden (in contrast to the Z ′ scenario, see e.g. [6]),
in that there is no light matter charged under both the visible and hidden sector fields, then
we can only detect them via kinetic mixing with the hypercharge [4]. The holomorphic kinetic
mixing χh

ab between two gauge groups a, b with holomorphic gauge couplings gha , g
h
b , appears in

the Lagrangian density

L ⊃
∫

d2θ

{
1

4(gha)
2
WaWa +

1

4(ghb )
2
WbWb −

1

2
χh
abWaWb

}
,

and in type IIB compactifications must have the form

χh
ab = χ1−loop

ab (zk, yi) + χnon−perturbative
ab (zk, e−τj , yi),

where zk, yi are the complex structure and brane position moduli respectively; the perturbative
contributions cannot depend upon the Kähler moduli, and thus cannot be volume suppressed.
After rescaling to the physical basis via the Kaplunovsky-Louis type relation [7, 2]

χab

gagb
= Re(χh

ab) +
1

8π2
tr

(
QaQb logZ

)
− 1

16π2

∑

r

nrQaQb(r)κ
2K,

(where K is the Kähler potential and Z = ∂α∂βK is the Kähler metric of matter fields) we
find, since we are assuming no light matter charged under both hidden and visible sectors

χab ∼
gagb
16π2

.

This estimate is plotted in figure 1 for the case of branes on a collapsed (small, MSSM-like)
cycle and on a LARGE cycle, taking into account the range of possibilities in the general K3
fibration scenario and allowing for an order of magnitude variation in the above estimate.

There is also the possibility, should the kinetic mixing be cancelled, that it is generated by
supersymmetry breaking effects; but in the LARGE volume scenario the values obtained are
typically very small [2].

3 U(1) Masses

Masses for U(1)s supported upon branes can be generated either via the Stückelberg mechanism
or by explicit breaking with a charged field obtaining a vacuum expectation value. The latter
could be due to a hidden Higgs mechanism or fermion condensate. We shall not discuss fermion
condensates, as they would require some strong gauge dynamics in the hidden sector and the
scale generated depends very sensitively upon the amount of hidden matter in the theory, so
there is no generic prediction.

In the LARGE volume scenario anomalous U(1)s automatically obtain masses at the string
scale, via the Stückelberg mechanism where the U(1) is eaten by an axion. However, many
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Figure 1: Kinetic mixing between the visible U(1) and a U(1) sitting on a collapsed cycle
(upper, blue) or a hyperweak U(1) on a LARGE cycle (lower, red) as a function of the string
scale.

non-anomalous U(1)s still obtain masses, but these generically contain some suppression by
volume factors. There are two classes of axions that contribute; those counted by h2,2

− and

those counted by h1,1
+ , respectively Hodge numbers odd and even under the orientifold. If we

consider a simplified 2 × 2 mass matrix of U(1)s where the first element corresponds to U(1)s
on small (or collapsed) cycles and the second to one wrapping the LARGE cycle (restricting
here to the swiss cheese case), then for the two types of contribution we have

m2
St (1) =

gs
2
M2

s

(
∼ V1/3 ∼ 1
∼ 1 ∼ V−1/3

)
, m2

St (2) =
gs
2
M2

s

(
∼ V−1/3 ∼ V−2/3

∼ V−2/3 ∼ V−1

)
.

Thus if the a brane wraps a cycle that is anti-invariant under the orientifold projection then
the first term will dominate. However, in early constructions of the LARGE volume scenario
h2,2
− = 0. The second contribution arises only if the brane supports two-form fluxes. Thus a

hyperweak gauge boson can acquire a mass mγ′ as low as ∼ meV if the string scale is ∼ TeV,
for intermediate scale strings mγ′ ∼ TeV but for a higher string scale the Stückelberg masses
are beyond the reach of current experiments.

Finally turning to a hidden Higgs mechanism with hidden Higgs pairs H1, H2, the minimal
potential is

V = m2
1|H1|2 +m2

2|H2|2 +m2
3(H1H2 + c.c) +

1

2
(ξh + gh|H1|2 − gh|H2|2)2,

wherem1,m2,m3 are soft masses and ξh = gY χab
1
8v

2 cos 2β is a Fayet-Iliopolous term generated
by kinetic mixing with the hyperchargeD-term, arising from the MSSM Higgs vev v ≃ 246GeV
and β the angle parametrising the relationship between up and down Higgs vevs. If we take the
hidden sector gauge coupling to be of the same order as the hypercharge and the soft masses
to be generated by “little gauge mediation” from the visible sector, then the Fayet-Iliopoulos
term generates a hidden gauge boson mass of ∼ GeV [8]. However, if we take the hidden gauge
group to be hyperweak, then due to the very small kinetic mixing, we can generate in principle
small masses since m2

γ′ = 2g2h(|H1|2 + |H2|2).
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If the symmetry breaking is dominated by the Fayet-Iliopoulos term, then mγ′ = 2ghξ and
the mi must necessarily be smaller than ghξ, so that the Higgs mass is ∼ ghξ ∼ mγ′ . Moreover,
the above simple scenario leaves one Higgs field massless. This is a problem since the Higgs
behaves like a minicharged particle, for which there are strict bounds if its mass is less than
∼ MeV. This problem persists if we set mi > ξ so that the hidden U(1) is broken by an
MSSM-type Higgs effect, since there 〈H1〉 ∼ 〈H2〉 ∼ mi/gh → mγ′ ∼ mi.

To obtain hidden photon masses smaller than∼ MeV, there is a natural mechanism involving
an additional hidden U(1)′′ symmetry with coupling g̃h ∼ gY that obtains a mass mγ′′ via the
Stückelberg mechanism. In this case, neglecting the Fayet-Ilioupoulos term, the potential is
modified to

Ṽ = m2
1|H1|2 +m2

2|H2|2 +m2
3(H1H2 + c.c) +

1

2

[
g2h + g̃2h

(
m2

x

m2
x +m2

γ′′

)]
(|H1|2 − |H2|2)2

where mx is the mass of the modulus corresponding to the axion eaten by the U(1)′′. We then
obtain the relation

mγ′ & 1

|W0|
mi → mγ′ & 1

|W0|
MeV,

where W0 is a constant parametrising the vacuum expectation value of the superpotential of the
underlying supergravity theory. By taking this to be large we can obtain a hierarchy between
the hidden gauge boson and Higgs masses, but at the expense of some fine-tuning.
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