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Effective pseudoscalar-photon interactions would induce a rotation of linear polarization of
electromagnetic wave propagating with cosmological distance in various cosmological mod-
els. Pseudoscalar-photon interactions are proportional to the gradient of the pseudoscalar
field. From the phenomenological point of view, this gradient could be neutrino number
asymmetry, any density current, or a constant vector. In these situations, Lorentz invari-
ance or CPT may effectively be violated. CMB polarization observations are superb tests
of these models and have the potential to discover new fundamental physics. In this pa-
per, we review the constraints on pseudoscalar-photon interactions from CMB polarization
observations.

1 Introduction

In 1973, we studied the relationship of Galilio Equivalence Principe (WEP I) and Einstein
Equivalence Principle in a framework (the χ-g framework) of electromagnetism and charged
particles, we found the following theory with (gravitational) interaction Lagrangian density

Lint = −(
1

16π
)(−g)1/2[

1

2
gikgjl − 1

2
gilgkj + φεijkl]FijFkl −Akj

k(−g)1/2 − ΣI
dsI
dt

δ(x− xI), (1)

as an example which obeys WEP I, but not EEP [1, 2, 3]. The nonmetric part of this theory is

L
(NM)

int = −(
1

16π
)(−g)1/2φεijklFijFkl = −(

1

4π
)(−g)1/2φ,iε

ijklAjAk,l (mod div), (2)

where ‘mod div’ means that the two Lagrangian densities are related by partial integration in
the action integral. The Maxwell equations [1, 3] are

F ik
|k + εikmlFkmϕ,l = −4πji, (3)

where the derivation | is with respect to the Christoffel connection. The Lorentz force law is
the same as in metric theories of gravity or general relativity. Gauge invariance and charge
conservation are guaranteed. The Maxwell equations are also conformally invariant.
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The last term in equation (2) is reminiscent of Chern-Simons [4] term eαβγAαFβγ. There
are two differences: (i) Chern-Simons term is in 3 dimensional space; (ii) Chern-Simons term
is a total divergence.

A term similar to the one in equation (2) (axion-gluon interaction) occurs in QCD in an
effort to solve the strong CP problem (Peccei and Quinn [5], Weinberg [6], Wilczek [7]). Carroll,
Field and Jackiw [8] proposed a modification of electrodynamics with an additional eijklViAjFkl

term with Vi a constant vector. This term is a special case of the term eijklϕFijFkl (mod div)
with ϕ,i = − 1

2Vi .
Various terms in the Lagrangians discussed in this section are listed in Table 1. Empirical

tests of the pseudoscalar-photon interaction (2) from CMB polarization observation will be
discussed in section 2. Section 3 will present an outlook.

Term Dimension Reference Meaning

eαβγAαFβγ 3 Chern-Simons (1974[4]) Integrand for topological
invariant

eijklϕFijFkl 4 Ni (1973[1], 1974[2],1977[3]) Pseudoscalar-photon
coupling

eijklϕFQCD
ijF

QCD
kl 4 Peccei-Quinn (1977[5]) Pseudoscalar-gluon

Weinberg (1978[6]) coupling
Wilczek (1978[7])

eijklViAjFkl 4 Carroll-Field-Jackiw External constant
(1990[8]) vector coupling

Table 1: Various terms in the Lagrangian and their meaning.

2 Constraints from CMB polarization observation

Pseudoscalar-photon interactions induce polarization rotation in electromagnetic propagation.
From (3), for the right circularly polarized electromagnetic wave, the propagation from a point
P1 to another point P2 adds a phase of α = ϕ(P2) − ϕ(P1) to the wave; for left circularly
polarized light, the added phase will be opposite in sign [1]. Linearly polarized electromagnetic
wave is a superposition of circularly polarized waves. Its polarization vector will then rotate by
an angle α. When the propagation distance is over a large part of our observed universe, we
call this phenomenon cosmic polarization rotation [9, 10].

Since the first successful polarization observation of the cosmological microwave background
(CMB) in 2002 by DASI [11] (Degree Angular Scale Interferometer), there have been a number of
observations [12-16] with better precision. These observations set limits on the electromagnetic
polarization rotation due to effective pseudoscalar-photon interaction.

In the CMB polarization observations, there are variations and fluctuations. The variations
and fluctuations due to scalar-modified propagation can be expressed as δϕ(2) − δϕ(1), where
1 denotes a point at the last scattering surface in the decoupling epoch and 2 the observation
point. δϕ(2) is the variation/fluctuation at the last scattering surface. δϕ(1) at the present
observation point is fixed. Therefore the covariance of fluctuation < [δϕ(2) − δϕ(1)]2 > gives
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the covariance of δϕ2(2) at the last scattering surface. Since our Universe is isotropic to ∼ 10−5,
this covariance is ∼ (ξ× 10−5)2 where the parameter ξ depends on various cosmological models
[10, 17].

In 2002, the DASI microwave interferometer observed the polarization of the cosmic back-
ground [11]. E-mode polarization is detected with 4.9 σ. The TE correlation of the temperature
and E-mode polarization is detected at 95% confidence. This correlation is expected from the
Raleigh scattering of radiation. However, with the (pseudo)scalar-photon interaction (2), the
polarization anisotropy is shifted differently in different directions relative to the temperature
anisotropy due to propagation; the correlation will then be downgraded. In 2003, from the
first-year data (WMAP1), WMAP found that the polarization and temperature are correlated
to more than 10 σ [12]. This gives a constraint of about 10−1 for ∆ϕ [9, 18].

Further results [13-16] and analyses [15, 19-27] of CMB polarization observations came out
after 2006. In Table 1, we update our previous compilations of [10, 17]. Although these results
look different at 1 σ level, they are all consistent with null detection and with one another at
2 σ level. For the interpretation of cosmic polarization rotation in various cosmologic models,
please see [10, 17].

The Faraday rotation due to a magnetic field is wavelength-dependent while the cosmic po-
larization rotation due to effective pseudoscalar-photon interaction is wavelength-independent.
This property can be used to separate the two effects in more precise observations.

Reference Constraint [mrad] Source data

Ni [9, 18] ±100 WMAP1 [12]

Feng, Li, Xia, Chen, and Zhang [19] −105 ± 70 B03 [14]

Liu, Lee, Ng [20] ±24 B03 [14]

Kostelecky and Mews [21] 209 ± 122 B03 [14]

Cabella, Natoli and Silk [22] −43 ± 52 WMAP3 [13]

Xia, Li, Wang, and Zhang [23] −108 ± 67 WMAP3 [13] & B03 [14]

Komatsu, et al. [15] −30 ± 37 WMAP5 [15]

Xia, Li, Zhao, and Zhang [24] −45 ± 33 WMAP5 [15] & B03 [14]

Kostelecky and Mews [25] 40 ± 94 WMAP5 [15]

Kahniashvili, Durrer, and Maravin ± 44 WMAP5 [15]

Wu, et al. [27] 9.6 ± 14.3 ± 8.7 QuaD [16]

Table 2: Constraints on cosmic polarization rotation from CMB (cosmic microwave back-
ground).
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3 Discussion and Outlook

Better accuracy in CMB polarization observation is expected from PLANCK mission launched
on May 14, 2009. Dedicated CMB polarization observers like B-Pol mission, CMBpol mission
and LiteBIRD mission would improve the sensitivity further. These development would probe
the fundamental issues of effective pseudoscalar-photon interactions discussed in this paper
more deeply in the future.

We would like to thank the National Science Council (Grant Nos NSC97-2112-M-007-002 and
NSC98-2112-M-007-009) and the National Natural Science Foundation (Grant Nos. 10778710
and 10875171) for supporting this work.
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