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We compute the photon-axion conversion probability in an external magnetic field with
a strong transverse gradient in the eikonal approximation for plane waves. We find it
typically smaller than a comparable uniform case. Some insights into the phenomenon of
photon-axion splitting are given.

Recently, a possible enhancement of photon↔axion conversions in magnetic fields with
strong gradients has been proposed [1, 2]. Such an enhancement is in the core of recent proposals
to explain some aspects of the X-ray activity of the Sun: the longstanding corona problem and
the triggering of solar flares [3, 4]. The core idea of these solutions is that axions created in the
solar interior by the Primakoff effect, and therefore having energies corresponding to X-rays,
could reconvert into photons in the outside layers of the Sun.

The standard mechanism for reconversion, inverse Primakoff, produces a too small depo-
sition of energy to account for these effects. An alternative is the coherent conversion in the
strong and long magnetic fields of the solar surface. An estimate of this effects using a 1-D
formula for the reconversion probability is not very promising either, but recent claims suggest
that this might be not adequate and a full 3-D calculation could lead to surprises [2, 4]. In
particular, axion-photon conversion in strong magnetic field gradients has attracted some at-
tention because could lead to an enhancement of the conversion probability due to the so-called
“photon-axion splitting” [5]. If such an enhancement is realized, it could be very advantageous
for laboratory experiments looking for axions, or axion-like-particles, to use quadrupole mag-
nets instead of the usual dipoles. This possibility is already under consideration in the CAST
helioscope and in the OSQAR “light-shining-through-walls” experiment [6].

In this contribution we present some simple calculations and physical insights on the phe-
nomenon of photon-axion splitting. We find the 1-D estimation of the conversion probability
to be reliable in the cases of interest. As a consequence, no enhancement is foreseeable in the
solar environment and the use of quadrupoles presents no advantage over current dipoles.

1 Invitation: Mirages

A hot surface like a road in summer behaves as a mirror for objects and observers placed near
to it. This phenomenon is called a “mirage” and has their origin on the curvature of light rays
in the presence of a temperature gradient causing a gradient of the air’s refraction index.
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Figure 1: Qualitative evolution of a light wave propagating initially parallel to a hot surface, which forms
a gradient of n. The index of refraction increases with altitude, so the wave-number k is increasingly larger
with respect to the frequency ω, making the phase-fronts increasingly closer with altitude. As the phase-fronts
become tilted, the light rays, which are perpendicular to them, bend upwards forming a inverted image.

2 The photon-axion system in a transverse gradient field

In a transverse external magnetic field (B), the component of the photon field along the external
magnetic field (A) mixes with the axion (a) and the equations of motion can be written as [7]

[
�+

(
m2

a gBω
gBω 0

)](
A
a

)
= 0 . (1)

Let us takema = 0 for the purpose of illustration. In this case, the equations can be diagonalized
by considering the linear superpositions A± = (A± a)/

√
2 which therefore evolve according to

�A± = m2
±A± ; with m2

± = ±gBω . (2)

The A± waves have indices of refraction with opposite sign given by n2
± = 1−m2

±/ω
2 = 1∓gB/ω

and therefore, in complete analogy with the mirage effect, the A± rays will curve in opposite
directions if there is a transverse gradient of the magnetic field. This leads to the so-called
“photon-axion splitting” [5] with very speculative and spectacular consequences [8].

We can get a not very sophisticated first look at the photon↔axion conversion probability
by looking at the evolution of A± phase fronts. In Fig. 2 we can see a comparison of the
homogeneous and constant gradient case. For this first look we neglect any diffraction effect
and changes on the A± amplitudes, we simply consider a 1-D problem for each value of x.
The phase fronts of A± separate a distance (n−1

+ − n−1
− )λ0 ≃ gBλ/ω in a wavelength λ0.

Equivalently, after a distance Z there is a phase difference of φ+ − φ− ≃ −gBZ between the
A+ and A− waves. This phase difference is constant in the x direction in the homogeneous case
but increases linearly for a constant gradient.

The γ ↔ a conversion probability per unit transverse length can be compared in both cases.
In each case it can be written as c‖eıφ+−eıφ−‖2/4 = c sin2(gBZ/2) with B = B0 for a constant
field and B = B1x for the gradient case (c is a normalization unimportant for our purposes).
The ratio of the two probabilities integrated over an interval x ∈ (−X,X) is then

P |B=B1x

P |B=B0

=
1
2 (1− sinc(2gB1XZ))

sin2(gB0Z/2)

gBZ≪1−−−−−→ 1

3

(
B1X

B0

)2

(3)

The last limit is relevant in usual practical applications, given the smallness of the values of
the axion-photon coupling g allowed by stellar evolution arguments as well as the typical sizes
and strengths of magnetic fields. Note that B1X gives the maximum magnetic field in the x-
interval we have used. Superconducting quadrupoles have their field gradients limited precisely
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Figure 2: (LHS) Evolution of the A± = (A± a)/
√
2 phase fronts (black dashed and solid,respectively) in the

presence of a transversely homogeneous (up) and constant gradient (down) magnetic field. The corresponding
rays are shown in red. (RHS) The gradient case shown in perspective.

by the critical field at the boundaries, so in comparing a quadrupole with a similar dipole one
should use B1X ∼ B0. Quadrupoles are therefore less efficient than dipoles. This result is
very easy to understand. By making the problem 1-D, only the strength of the magnetic field
squared matters, which in average is of course smaller in a quadrupole than in a dipole.

3 Solution in the eikonal approximation

The most important 2-D features of the problem can be studied in the eikonal approximation.
Starting with the ansatz A±(x, z, t) = A±(x, z)e−ıωteıωS±(x,z) the equations of motion become

(∇S±)
2 − ı

1

ω

∇
(
A2

±∇S±
)

A2
±

− 1

ω2

∇2A±
A2

±
= 1− m2

±
ω2

≡ n2
±(x) (4)

The eikonal approximation amounts to neglect the second and third terms of the LHS, which
are suppressed if diffraction effects occur in length scales much longer than the wavelength
λ0. We will solve only the equation of A+ since the solution of A− is given by the former by
changing the sign of the magnetic field. The eikonal equation (∇S)2 = n2(x) can be solved by
the method of characteristics, i.e. finding a one-parameter family of curves ~rx0(s) = (x(s), z(s))
(we drop the trivial component y) that satisfy the Hamilton equations

d~r

ds
= ~p ;

d~p

ds
= ~∇n2/2 . (5)

with initial conditions at the boundary of the magnetic field ~r(0) = (x0, 0), ~p(0) = (0, n0) with
n0 = n(x0). These are given by

~r(s, x0) =
(
x0 − Bs2/4, sn0

)
(6)

where we have defined B = gB1/ω, the quantity that controls the inverse of the radius of
curvature of rays R = 4B−1(1+ (Bs/2)2)3/2, which turns out to be huge for typical parameters

B−1 =
ω

gB1
≃ 5× 1017m

( ω

keV

)( g

10−10GeV−1

)−1(
B1

T/cm

)−1

(7)
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The angle of divergence of the A± rays after a length z is θB ≃ Bz.
The eikonal function giving the evolution of the A± phases is given by

S =

∫ s

0

~∇S · d~r(s) = sn2
0 +

B2s3

12
= zn(x)

(
2

1 +
√

1− ξ2

)1/2(
2 +

√
1− ξ2

3

)
, (8)

where ξ = Bz/(1−Bx) is used. In Fig. 3 we show some rays and iso-contours of the eikonal func-
tion S. Defining ∆S(x, z,B) = S(x, z,B)−S(x, z,−B), the photon-axion conversion probability
per unit transverse length in the eikonal approximation is

dP
2D

/dx

dP
1D

/dx
=

sin2 ω∆S/2

sin2 gBz/2

Bx<Bz≪1−−−−−−−→ sin2
(
gB1xz/2

(
1 + (Bz)2/8

))

sin2 gBz/2
. (9)

Where we have normalized again to the 1-D result for comparison. Note that this is a very
small correction to our previous 1-D rough estimate if Bz ≪ 1.

So far we have considered only infinite plane waves. If our photon or axion beam passes
through a confined region of size X , it will suffer diffraction with a characteristic angle given
by θ = 1.22λ0/X which might be larger than the splitting angle if Bz(ωX) = gB1Xz ≪ 1 (the
typical case except maybe in very extreme conditions [8]). However, this certainly does not
evade our conclusion when diffraction is negligible, which would occur for an helioscope using
a quadrupole magnet. Indeed it is very likely that even beams with large diffraction don’t
show additional enhancements in the photon↔axion probability either. We have calculated the
conversion probabilities for typical laser beam parameters used in light-shining-through-walls
experiments and found no surprise at all. These results will be presented elsewhere [9]
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Figure 3: Rays (thick), phase fronts (thin)
and iso-contours of optical path s (dashed) of
the field A+ = (A+a)/

√
2. A caustic is formed

by the accumulation of rays in ξ = 1, (Bz = 1−
Bx), the wave cannot propagate in the upper
region. The length scales are normalized to the
characteristic length scale of the ray deflection
B−1. The evolution of A− is the mirror image
with respect to the x = 0 line.
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