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We calculate the total cross section for the production of photons from the scattering of
axions by a strong inhomogeneous magnetic field in the form of a 2D delta function, a
cylindrical step function and a 2D Gaussian distribution, which can be approximately pro-
duced by a solenoidal current. The theoretical result is used to estimate the axion-photon
conversion probability which could be expected in a reasonable experimental situation.
Finally, we have also considered scattering at a resonance Eaxion ∼ maxion, which gives
the most enhanced results.

In a series of recent publications by one of us [1], it was shown that an axion-photon system
displays a continuous duality symmetry when an external magnetic field is present and when
the axion mass is neglected. This allows one to analyze the behavior of axions and photons
in external magnetic fields in terms of an axion-photon complex field. It is important to note
here that the same duality symmetry exists also when considering massive photons, under the
condition mγ = ma.

This new 2D formalism uses a duality symmetry between the axion field and the scattered
component of the photon to define an axion-photon complex field as Ψ = 1/

√
2(φ+ iA), where

φ is the axion field and A is the photon component that takes part in the scattering process.
We focus here on the case where an electromagnetic field with propagation along the x and
y directions and a strong static magnetic field pointing in the z-direction are present. The
magnetic field may have an arbitrary space dependence in x and y. For convenience let us
neglect the axion mass so we can write the lagrangian in terms of the new canonical variables
Ψ and its charge conjugate Ψ∗

L = ∂µΨ
∗∂µΨ− i

2
β(Ψ∗∂tΨ−Ψ∂tΨ

∗) , (1)

where β(x, y) = gB(x, y) with B(x, y) being the external magnetic field and where g is the
photon-axion coupling constant. To apply these results to some specific system with a magnetic
field, we write separately the time and space dependence of the axion-photon field as Ψ(~r, t) =
e−iωtψ(~r).

As a first model, we consider a magnetic field of the form B = Φδ2(x, y). This kind of a
potential can not be realized in the lab but we will show that the results for this calculation
have physical significance in the resonance case, where the scattering becomes isotropic.
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Separating the time and space dependence of Ψ and considering the δ function potential
gives the following equation of motion

[−~∇2 + gΦEδ2(x, y)]ψ(~r) = E2ψ(~r) , (2)

where E is the energy of the particle beam. Solving this equation while regulating the δ function
by introducing the cutt-off Λ yields the solution

ψ(~r) = ei
~k·~r −Gk(r)

[
1

gΦE
+

log(Λ/E)

2π
+
i

2

]−1

, (3)

where Gk(r) is Green’s function in two dimensions Gk(r) =
i
4H

(1)
0 (kr)

r→∞−→ 1
2
√
2πkr

ei(kr+π/4).

The scattering amplitude f(θ) is found from the asymptotic behavior of the scattering

wave function ψ(~r) → ei
~k·~r + 1√

r
f(θ)ei(kr+π/4). Since there is no dependence on θ in f(θ) the

scattering here is completely isotropic. Then, to first order in g we find that σδ
tot = g2Φ2E

4 .

Thus, the probability is given by Pδ = σS/σG = g2Φ2E
4D = π2g2B2R3E

8 , where σG = 2RL is the
geometrical cross-section of the potential.

We wish to obtain eventually measurable quantities which can be incorporated in a labo-
ratory experiment, thus we have to consider a more realistic function to describe the magnetic
field generated by the solenoid. First, let us describe the inhomogeneous magnetic field by a

Gaussian distribution around the solenoid’s axis ~B(r) = B0e
−r2

R2 ẑ. Hence, the scattered wave
function is

ψ(~r) = ei
~k·~r +

√
πgB0R

2
√
E

2
√
2r

e−
1
4 (Rq)2ei(kr+π/4) . (4)

This gives for the scattering amplitude f(θ) =
√
(π/8)gB0R

2E1/2e−
1
4 (Rq)2 , where the ex-

plicit dependence of q (i.e the momentum transfer) on the angle is given by q2 = 2k2(1−cos θ) =
4k2 sin2(θ/2). Hence, The total 2D cross-section is given by

∫ 2π

0

|f(θ)|2dθ = π

8
(gB0)

2R4E

∫ 2π

0

e−
1
2 (Rq)2dθ =

π2

4
(gB0)

2R4Ee−(Rk)2I0((Rk)
2) , (5)

where I0(x) = J0(ix) is the modified Bessel function. The argument of this function (i.e (Rk)2)
is very large (1 eV × 1 cm ≈ 105) so we can use the asymptotic from of the modified Bessel

function which, by keeping only the first order term, gives the result σGauss
tot = π3/2

√
32
g2B2

0R
3,

from which we find the conversion probability to be PGauss =
π3/2

8
√
2
g2B2

0R
2.

Now we turn to consider the magnetic field generated by an ideal solenoidal current which
is described by a step function realizing a uniform magnetic field pointing in the ẑ direction
and constrained to a cylindrical region around the origin: ~B(~r) = B0ẑ for r < R. Using the
Fourier transformation of the step function we find that the scattering amplitude is now given

by f(θ) =
√

π
2
B0RgE1/2

q J1(qR), where the explicit dependence of q on θ was shown earlier here.
Before evaluating the integral for the total cross-section, let us write the total cross section

for the square well case in terms of the delta function cross-section: σwell
tot. = σδ

tot.
2
π I(ER), where

I(ER) =
∫ 2π

0

∣∣∣J1(qR)
qR

∣∣∣
2

dθ is a dimensionless quantity which is a function of the multiplication
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E ·R. Of course, the proportionality constant connects also the conversion probabilities for the
δ function and square well cases. Denoting ER = kR by η, the integral can be analytically
solved with the solution I(η) = π

2 2F3({ 1
2 ,

2
3}; {1, 2, 3} ;−4η2), where 2F3 is an hypergeometric

function.
To analyze this solution we expand the hypergeometric function 2F3 to a series. Then, for

small η, I(η) is converging toward the constant value π/2, thus giving the equality σwell
tot. = σδ

tot..
This result is expected since considering only small η values is equivalent to considering isotropic
scattering because η ≪ 1 means that ER ≪ 1. Hence, the wavelength of Ψ is very large
compared to the length scale of the potential. Therefore, this approximation corresponds to δ
function limit of the step function, which, in turn, means that we consider isotropic scattering.

On the other end, we have the expansion for large η which shows that the integral approaches
the limit I → 8

3πη = 8
3πER very fast. This limit gives the result Pwell =

1
6g

2B2D2 = 2
3g

2B2R2.
So far in this report, we have considered the axion field as a massless field in order to get

the U(1) symmetry between axions and photons. In fact, this symmetry holds up whenever
the axion mass is equal to the (effective) photon mass inside a medium. Of course, in that case
our conclusions will have to be modified. The term that has to be taken under consideration is
an 1/

√
(E2 −m2)1/2 term which comes from the Green’s function and will replace the current

1/
√
E in the scattering amplitude. Thus, in the ma ∼ mγ 6= 0 case, the total two dimensional

cross-section (for the δ function case) would have the following energy dependence: σtot =
πg2B2R4E2

4
√

(E2−m2)
, and we have a resonance when E = m. For an axion rest mass below ∼ 1 eV, this

can have practical consequences, for example, in laser generated axions when one can control
the energy of the axion beam.

The limit of zero momentum means accounting only zero modes of the Fourier Transform,
hence the 1D treatment of this process can not be justified since in the limit of zero momen-
tum the scattering amplitude and the differential scattering cross-section become isotropic (i.e
independent of the angle) and it is impossible to consider only one direction in the scattering.

To summarize, we have studied here the first examples of scattering which is not one di-
mensional and we have obtained enhanced probabilities. This effect is further increaed in the
case of resonant scattering that appears when E = m and corresponds to isotropic scattering.

In the 1D case the conversion probability is P1D = g2B2l2/4, where l is the linear dimension
associated with the extent of the magnetic field [4]. Hence, when trying to compare the con-
version probability for the cylindrically symmetric geometry found by the method used in this
work with the known 1D calculation it is not so obvious what is the correct length scale l that
should be taken to calculate P1D. The problem is that the notion of splitting does not make
sense in 1D and that the scattering region is not an area but a line. Hence, the best way to
discuss the relation between the two calculations will be to average the 1D probability over the
scattering region for each case. In other words, we look at the 2D experiment as the weighted
average of an infinite number of 1D experiments.

The general case is rather complicated since the scattering region may be infinite and the
magnetic field may not be homogenous. However, a 1D analogue to the 2D experiment can be
found and the weighted average can be done by choosing the magnetic flux as the averaging
measure

P avg.
1D =

∫∞
−∞

∫∞
−∞

1
4g

2|
∫∞
−∞B(x′, y)dx′|2B(x, y)dxdy

∫∞
−∞

∫∞
−∞B(x, y)dxdy

. (6)

For the step function case the scattering region is a cylinder with radius R. Hence, the
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average of P1D in this case is Pwell avg.
1D = 2

3g
2B2

0R
2 a result which coincides with the 2D result.

When considering the Gaussian case the averaged 1D probability is PGauss. avg.
1D = π√

3

g2B2
0R

2

4 .

The comparison of this result with the 2D result gives PGauss/P
Gauss. avg.
1D = 1.085 and thus

the 2D result is bigger by 8.5%.
Despite Eq. (6) not all 2D experiments can have a 1D analogue. We have seen that when

considering resonant scattering, the limit of zero momentum implies that the cross section is
isotropic and there is no way to describe such a process with an analogous 1D calculation.

When considering scattering from a finite sized potential the enhancement of the conversion
probability compared to the 1D case still gives probabilities in the same order of magnitude.
This is due to the fact that the wavelength (1/E) of the Ψ wave function is much smaller than
the length scale of the potential (R), which essentially results in a quasi-1D behavior of the
system. When the wavelength will be smaller, or even comparable to the length scale of the
potential we see that we get bigger enhancement since in this case the scattering becomes more
and more isotropic and we essentially obtain δ function scattering.

The wavelength is determined by the momentum of the particles. For the massive case, the
momentum approaches zero when the energy of the particles is of the order of the particle’s
mass. This situation, where the wavelength of the particles is much larger than any other
length scale in the problem, is realized in the resonant scattering case. There we have shown
explicitly that this limit gives an isotropic scattering for a finite potential and thus, conversion
probabilities of the order of the δ function case.

Our results may also be applicable for solar scales as well. In the sun, magnetic flux tube
can play the role of a solenoidal potential while the energy spectrum of photons is continuous.
Thus, we expect to have both isotropic and anisotropic scattering. These magnetic flux tubes
are enormous regions of constant magnetic flux with length scale of the order of about 102 km
in diameter and 103 km in length. Hence, the conversion probability will be greatly enhanced.
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