Missing energy commissioning in CMS and prospects for supersymmetry searches with 1 fb^{-1}

Robert Schöfbeck for the CMS Collaboration

Institute of High Energy Physics, Nikolsdorfergasse 18, Vienna, Austria

DOI: http://dx.doi.org/10.3204/DESY-PROC-2010-01/257

Supersymmetry may give rise to striking events that could be discovered early in LHC running. We discuss the prospects of discovery of search strategies based on the generic event signatures of high jet multiplicity and large missing transverse momentum. An important aspect of such searches is the commissioning of search variables with the first LHC data which we present in detail.

1 Introduction

The CMS detector [1] has nearly 4π solid angle coverage and is able to detect most species of particles produced in proton-proton (pp) collisions up to $|\eta| \approx 5$. Exceptions are neutrinos and hypothetical weakly interacting particles, which escape from the detector without leaving a trace. Their presence can still be inferred from the missing transverse momentum (\vec{E}_T) , defined as the apparent imbalance of the component of the momentum in the plane perpendicular to the beam direction, and its magnitude is referred to as missing transverse energy (\vec{E}_T) .

 E_T is one of the most important variables for discriminating leptonic decays of W bosons from background events which do not contain neutrinos, such as QCD jet and Drell-Yan events. E_T is also an important variable in any search for new particles that are weakly interacting or quasi-stable. Many beyond-the-standard-model scenarios, including Supersymmetry, predict events containing large E_T .

2 $\not\!\!\!E_T$ commissioning with early CMS data

PLHC2010

Figure 1: Calo $\not\!\!\!E_T$, $Tc \not\!\!\!\!E_T$ and $Pf \not\!\!\!\!\!E_T$ in a selection with two jets.

Figure 2: Calo $\not\!\!\!E_{x,y}$, Tc $\not\!\!\!E_{x,y}$ and $Pf \not\!\!\!\!E_{x,y}$ in a selection with two jets.

The data sets used for studies were collected since the end of March 2010 and correspond to an integrated luminosity of 272 μ b⁻¹. The data samples were collected by the minimum-bias trigger and the dijet-selection requires two jets in the central rapidity range $|\eta| < 3$ passing the jet ID cuts and $p_T > 20$ or 10 GeV for the first and second hardest jet [5].

3 Prospects for SUSY searches

The phenomenology of mSUGRA models [6, 7] has been studied extensively in the literature, partly because these models have the attractive feature that they can be specified by just four parameters and a sign:

$$m_0, m_{1/2}, \tan\beta, A_0, \operatorname{sign}(\mu) \tag{1}$$

PLHC2010

308

Figure 3: Estimated 95% C.L. exclusion limits for the all-hadronic SUSY search, expressed in mSUGRA parameter space.

where m_0 is the common mass of the scalars at the supersymmetric GUT scale, $m_{1/2}$ is the common gaugino mass, A_0 is the common soft trilinear SUSY breaking parameter, $\tan \beta \equiv v_u/v_d$ is the ratio of the two Higgs vacuum expectation values, and $\operatorname{sign}(\mu)$ is the sign of Higgsino mass parameter. For the CMS sensitivity scans, we have chosen $A_0 = 0$, $\tan \beta = 3$ or 10, and $\operatorname{sign}(\mu)$ to be positive. With these parameters fixed, the sensitivity curves are displayed in the plane of $m_{1/2}$ vs. m_0 in Fig. 3. The sensitivity curves are based on the expected signal yield, which is a function of position in mSUGRA parameter space (due to variation in both the cross section and in the efficiency), and the expected background (and its uncertainty), which is only a function of the cuts. No attempt was made to optimize the selection cuts as a function of position in mSUGRA space.

Figure 3 shows the 95% C.L. upper limit contours [8] for the all-hadronic search at two values of the integrated luminosity, 100 pb⁻¹ and 1 fb⁻¹, for tan $\beta = 10$ at $\sqrt{s} = 7$ TeV. Some aspects of this plot require care in interpretation. The exclusion regions for the CDF [9] measurement are defined for tan $\beta = 5$, while those from D0 [10] are defined for tan $\beta = 3$. These Tevatron searches are both based on jets + missing transverse momentum signatures using approximately 2 fb⁻¹. The LEP exclusion regions are based on searches for sleptons and charginos [11]. Preliminary CMS studies of the hadronic channel indicate that its sensitivity is only weakly dependent on the value of tan β .

Figure 4 shows the 95% C.L. upper limit contours for the like-sign dilepton search, combining the $\mu^{\pm}\mu^{\pm}$, $\mu^{\pm}e^{\pm}$ and $e^{\pm}e^{\pm}$ channels. For comparison, we show the exclusion region from recent CDF and D0 trilepton analyses [12, 13]. Both CMS and Tevatron analyses assumed tan $\beta = 3$ in evaluating the sensitivity curves. The peaks in the sensitivity curve at low $m_{1/2}$ and for $m_{1/2}$ 450 GeV reflect the rate of production of like-sign dileptons in mSUGRA models.

These results indicate that in the 7 TeV run, CMS should have sensitivity to regions of SUSY (mSUGRA) parameter space beyond the current Tevatron limits. Both of the channels discussed here (all-hadronic and like-sign dileptons) should be able to yield interesting sensitivities well before 1 fb⁻¹.

PLHC2010

Figure 4: Estimated 95% C.L. exclusion limits for the like-sign dilepton SUSY search, expressed in mSUGRA parameter space. The expected background from the standard model at 100 pb⁻¹ (1 fb⁻¹) is 0.4 (4.0) events; we have assumed an observed yield of 1 event (4 events) for the purpose of setting these exclusion limits.

References

- [1] G. L. Bayatian et al. [CMS Collaboration], "CMS physics: Technical design report".
- [2] CMS Collaboration, "Missing ET Performance in CM", CMS Physics Analysis Summary JME-07-001 (2007).
- [3] CMS Collaboration, "Track-corrected Missing Transverse Energy in CM", CMS Physics Analysis Summary JME-09-010 (2009).
- [4] CMS Collaboration, "Particle-Flow Event Reconstruction in CM", CMS Physics Analysis Summary PFT-09-001 (2009).
- [5] CMS Collaboration, "Jet and MET Commissioning Results from 7 TeV Collission Data", CMS Detector Performance Summary DPS-2010-014.
- [6] A. H. Chamseddine, R. L. Arnowitt and P. Nath, "Locally Supersymmetric Grand Unification", Phys. Rev. Lett. 49 (1982) 970.
- [7] E. Cremmer, P. Fayet and L. Girardello, "Gravity Induced Supersymmetry Breaking And Low-Energy Mass Spectrum", Phys. Lett. B 122, 41 (1983).
- [8] J. Conway, CDF/Pub/Statistics/Public/6428 (2005).
- [9] CDF Collaboration (T. Altonen et al.), Phys. Rev. Lett. 102, 121801 (2009); arXiv.org:0811.2512; the CDF exclusion region in the m_{1/2} vs. m₀ plane appears in CDF Public Note 9229, March 2008.
- [10] D0 Collaboration (V.M. Abazov et al.), Phys. Lett. B 660, 449 (2008); arXiv.org:0712.3805.
- [11] LEPSUSYWG; ALEPH, DELPHI, L3, and OPAL Collaborations, note LEPSUSYWG/02-06.2, http://lepsusy.web.cern.ch/lepsusy.
- [12] CDF Collaboration, CDF/PUB/EXOTIC/PUBLIC/9817 (2009).
- [13] D0 Collaboration, V. Abazov et al., Phys. Lett. B 680, 34 (2009).