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The Minimal Supersymmetric Extension of the Standard Model (mssm) features a light
Higgs boson, the mass Mh of which is predicted by the theory. Given that the lhc will
be able to measure the mass of a light Higgs with great accuracy, a precise theoretical
calculation of Mh yields an important test of the mssm. In order to deliver this precision,
we present three-loop radiative corrections of O

`
αtα

2
s

´
and provide a computer code that

combines our results with corrections to Mh at lower loop orders that are available in the
literature.

1 Introduction

The Higgs sector of the Minimal Supersymmetric Extension of the Standard Model (mssm)
consists of a two-Higgs doublet model, which is tightly constrained by supersymmetry. In
particular, the quartic terms of the Higgs potential are completely fixed by the gauge couplings.
Thus, it is possible to describe the mssm Higgs sector through only two new (with respect to the
Standard Model) parameters, which are usually taken to be the mass MA of the pseudoscalar
Higgs and the ratio tanβ = v2

v1
of the vacuum expectation values of the Higgs doublets. In

particular, Mh, the mass of the light scalar Higgs boson, can be predicted, and at the tree-
level only these two parameters enter the prediction, leading to an upper bound of Mh ≤
MZ . However, Mh is sensitive to virtual corrections to the Higgs propagator that shift this
upper bound significantly. These virtual corrections depend on all the supersymmetry breaking
parameters. This sensitivity to virtual corrections, combined with the great precision with
which the Large Hadron Collider (lhc) will be able to measure the mass of a light Higgs, allows
Mh to be used as a precision observable to test supersymmetric models – assuming that the
theoretical uncertainties are suffiently small and under control.

Consequently, the one- and two-loop corrections to Mh have been studied extensively in
the literature (see, for example [1, 2, 3, 4, 5, 6, 7, 8]). The remaining uncertainty has been
estimated to be about 3 − 5 GeV [10, 9]. Recently, also three-loop corrections have become
available. The leading- and next-to-leading terms in ln(MSUSY /Mt), where MSUSY is the
typical scale of susy particle masses, have been obtained in [11]. Motivated by the observation
that the contributions from loops of top quarks and their superpartners, the stops, are dominant
at the one- and two-loop level, we have calculated three-loop susy-qcd corrections to these
diagrams. These corrections are of O

(
αtα

2
s

)
, where αt is the coupling of the Higgs to the top

quarks. A first result has been obtained in [12]. There, we assumed that all the superpartners
had approximately the same mass. This restriction has been dropped recently in [13].
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Figure 1: Prediction for the value of Mh (in GeV) for msugra scenario with tanβ = 10, A0 = 0,
as evaluated by H3m. The white lines and points indicate the benchmark scenarios of [19].

2 Organisation of the calculation

A major difficulty in obtaining the results of [13] was the presence of many different mass
scales – the masses mt of the top quark, mg̃ of the gluino, mt̃1,2 of the stops and mq̃ of the
partners of the light quarks – in the three-loop propagator diagrams. Assuming that there is a
distinct hierarchy between these masses, they can be disentangled by the method of asymptotic
expansions [14], yielding an expansion of the diagrams in small mass ratios and logarithms of
mass ratios. Working in the effective potential approximation, we set the external momentum
flowing through the Higgs propagator to zero and are left with tadpole integrals with a single
mass scale, which are known and implemented in the form [15] program matad [16].

However, as the masses of the superpartners are not known, it is not clear which hierarchy
one should assume. We solve this by computing the diagrams for many different hierarchies.
Then, when given a point in the mssm parameter space, we choose whichever hierarchy fits best
and evaluate Mh using the calculation in the chosen hierarchy. To choose the best hierarchy
and to estimate the error introduced by the asymptotic expansion, we compare, at the two-loop
level, our expanded result with the result of [7], which contains the full mass dependence.

For convenience, we have written the Mathematica package H3m [17], which automatically
performs the choice of the best fitting hierarchy and provides a susy Les Houches interface
to our calculation. This allows to perform parameter scans as in Fig. 1. In order to get a
state-of-the art prediction for Mh, we include all available contributions to Mh at the one- and
two-loop level that are implemented in FeynHiggs [18]. For details on the usage and inner
workings of the program, we refer to [13].

3 Estimating the theoretical uncertainty

We observe that the dependence of Mh on the renormalisation prescription, which is often
used as a guesstimate for the uncertainty due to unknown higher order corrections, reduces
drastically when one goes from two to three loops. But since we also find that the size of the
three-loop corrections can be of the order of one to two GeV, which is rather large given that the
two-loop corrections are only about a factor of two larger, we prefer to be conservative in our
estimation of the theoretical uncertainty. Assuming a geometric progression of the perturbative
series, we get for msugra scenarios an uncertainty due to missing higher order corrections of
100 MeV to 1 GeV, depending on the value of m1/2. The parametric uncertainty due to αs, mt
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and mt̃1,2 is of the same order of magnitude. The uncertainty introduced by the expansion in

mass ratios amounts to at most 100 MeV [13].

4 Conclusions

We present a calculation of the O
(
αtα

2
s

)
corrections to Mh, shifting the value of Mh by about

1 GeV. We provide a computer code combining our results with corrections from lower loop
orders, thus enabling a state-of-the-art prediction of Mh. Our calculation lowers the theoretical
uncertainty due to missing higher orders to the same magnitude as the parametric uncertainty.

This work was supported by the DFG through SFB/TR 9 and by the Helmholtz Alliance
“Physics at the Terascale”.
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