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After showing the axion couplings, I review the Hawking type solution of the cosmological
constant problem, present a (probably) correct way to calculate the probability amplitude,
and show that the Kim-Kyae-Lee self-tuning model allows a finite range of parameters for
the Λ = 0 to have a singularly large probability, approached from the AdS side.

1 Axion couplings

Since this is an axion conference, I present first the axion couplings with the current status and
then discuss on the cosmological constant (CC). The axion couplings are given in [1] for the
KSVZ [2] and DFSZ axions [3]. We show the current cosmological and astrophysical bounds
in Fig. 1. Theortical expectations are also shown. In particular, we insert one line [4] from a
superstring model calculation from a Z12−I compactification [5]. This is a calculation from a
theory with an ultra violet completion with all fermions of the full theory is taken into account.
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Figure 1: (a) The cosmological bounds and axion models, and (b) the astrophysical bounds.
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2 Cosmological constants

Now, I present the idea on the solution of the CC problem in models with extra dimensions
published in [6, 7].

Recently, Nicoli commented (cited in [7]) that the Einstein equation is inconsistent from
the outset because the left-hand side (LHS) and the right-hand side (RHS) of the Einstein
equation Rµν − 1

2Rgµν = 8πGNTµν are logically different. The LHS is exactly determined by
the continuous space-time geometry, and the RHS is contributed by particle quanta which have
roots in the probabilistic interpretation of quantum mechanics. So, any discussion in the Planck
era is speculative and not yet well formulated, and the present CC solutions are speculative.
But they are welcome if it is not contradicted outrageously from the present perspective on
the fundamental physics. In this spirit I present an idea with a specific action toward a CC
solution.

One question on the determination of the CC is at which energy scale and temperature the CC
is required to vanish. Out of the mass hierarchy scales in particle physics, from MP = 2.44×1018

GeV down to T ≈ 10−4 eV, the scale where the CC is determined must be known. Note that
there are two other issues related to the CC constant. After the first inflationary scenario with
the R and R2 terms [8], the inflationary paradigm has been formulated with a scalar field called
the inflaton [9]. Presumably, the beginning of inflation with the inflaton starts at a temperature
when the vacuum energy was much above the electroweak scale [9]. The vanishing CC solution
at the zero temperature must be in harmony with this inflation of the early Universe. Another
CC related issue is the current acceleration of the Universe which is known as the dark energy
(DE) problem [10]. The current DE is not exactly zero but of order (0.002 eV)4. The vanishing
CC solution must be in harmony with this tiny DE also. If there exists a CC solution, it is
better to address these other problems.

When we consider quantum mechanics, we talk in terms of the probability amplitude: The
initial state |I〉 transforming to a final state |F 〉. In this spirit, Baum and Hawking [11] con-
sidered the Euclidian action, only with the Ricci scalar R and the CC term Λ. If the topology
change of the metric is considered, we must know the full gravity equation, in which case an
exponential of exponential function may be obtained [12]. But, here we do not delve into
an exponential of an exponential. The Euclidian action integral was found to have the form
e−ĨE = e3πM2

P /Λ. Hawking considered a scalar field in terms of Aµνρ (or the field strength
Hµνρσ).

In this scenario, the quantity to calculate is the action. Even if we understand the CC
in this way, we must address the following: (i) How do we assign the initial state?, (ii) How
does the needed primary inflation come about in this scenario?, and (iii) How does it fit to the
current DE?

With extra dimensions, there exists the no-go theorem for self-tuning solutions under some
plausible conditions such that one employs the usual kinetic energy term and assumes the
existence of Lorentz symmetry and 4D gravity for a large distance separation [13]. So, we
try to go beyond using the standard kinetic energy (KE) term. In this regard, we note the
self-tuning model by Kim, Kyae and Lee (KKL) [14]. The KKL model is worked out in the
Randal-Sundrum II setup [15], with a nonstandard KE term of the field strength HMNPQ:
∼ 1/H2 [14],

−IE =
∫

d5xE
√

g(5)

(
1
2R(5) − 2·4!

H2 − Λb − Λ1δ(y)
)

=
∫

dy
∫

d4xE{
−Ψ4Λ1δ(y) + 1

2RΨ2 + 4Ψ3Ψ′′ + 6Ψ2(Ψ′)2 + 2·4!Ψ4

H2 −Ψ4Λb

}
. (1)
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The KE term with H2 is not developing a VEV in the low energy limit, i.e. in the long
wavelength limit (∂µAνρσ) → 0. So, even with 〈H2〉 = 0, H2 can be moved to the denominator,
1

H2 , with 〈H2〉 6= 0. The self-tuning solution of (1) was found in [14]. It is easy to show the
existence of the nearby dS and AdS solutions also. With this self-tuning solution, we illustrate
our idea of the CC solution.

3 The wave function of the universe

One way of doing quantum cosmology is to solve the Wheeler-DeWit equation with an appro-
priate boundary condition. The obtained wave function of the universe is independent of time.
It is a videotape containing all the information of the universe. There are many videotapes
satisfying the Wheeler-DeWit equation [7]. The probability to obtain a certain videotape is
given by the wave function of the universe. If one obtains a videotape, he can run it in a film
motion-picture projector with a certain definition of time to see how the videotape, containing
all the fundamental constants of physics, evolves in the classical regime.

This idea of quantum cosmology must be recast with extra dimensions and branes. The
KKL solution has a remarkable property as noted in [16] that the vanishing CC solution is not
allowed for the parameter range of |Λ1| ≥

√−6Λb, since the boundary condition at the brane
(β′/β)y=0+ = −Λ1/6 cannot be satisfied, which is shown in the LHS figure of Fig. 2.

Λ
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Figure 2: (a) Brane world parameters. The initial inflation takes place for |Λ1| >
√−6Λb.

(b) The initial inflation and the recent acceleration. In the lavender band, the CC solution is
swamped and the wave function of the universe is not exactly choosing the equilibrium point.

We start with a finite range of parameter of Λ1 in the top region of the LHS side figure of
Fig. 2. Next, the particle physics action at the brane may change Λ1 such that it falls into
the central region where all the possibilities are open: flat, dS and AdS solutions. Then the
inflationary period might end. This state in the central region is our initial condition.

The number of e-foldings during inflation is about 60, or the scale factor increases by a factor
1026. So, the brane Lagrangian for inflation is tuned to satisfy this condition. Then, the initial
temperature Ti drops to 10−26Ti before the inflaton reheats up the universe. At this supercooled
state before reheating, we define the initial state for the probability calculation. This initial state
must be fuzzy enough to allow (0.002 eV)4 vacuum energy, even if our probability calculation
dictates the vacuum energy should be zero. Then, we require 10−26Ti be greater than 0.002
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eV, namely Ti should be greater than 2 × 1014 GeV. Namely, we let the fuzziness of our CC
solution cannot be accurate down to order (0.002 eV)4, which is depicted in Fig. 2.

4 Calculation of probability amplitude in the KKL model

If particle physics Lagrangian does not contribute to the action integral, it is sufficient to
consider the R and Λ terms only as Hawking has done. His basic argument was on the size
of the Euclidian volume, suppressed by 1/Λ. The dS space volume is finite, the flat space
volume is infinite, and the AdS space volume is even more infinite. If we consider the particle
physics Lagrangian, as in the self-tuning model of KKL, the 1/ Λ

2
term contributes and the

AdS volume wins [6]. This may change Hawking’s view completely.

Here, I discuss what has been discussed on the H2 Lagrangian in the Hawking type calcu-
lation, present a (probably) correct way to calculate the amplitude, and show that the KKL
self-tuning model allows a finite range of parameters for which Λ = 0− has the singularly large
probability [6].

Hawking presented the first calculation, using H2 term in the Lagrangian [11]. Since then,
there has been discussions on which value of the H2 term must be used in the action integral.
A surface term ǫµνρσHµνρσ has been noted, which does not change the equation of motion. It
turned out that it amounts to changing the sign of H2 term in the action integral [17], from
which Duff concluded that the probability amplitude for Λ = 0 is least probable with Hµνρσ .
But, Wu [17] obtained the opposite result from that of Duff. This is because of the treatment
on the surface term, which does not affect the equation of motion. If we follow Duff’s method,
it has the effect of changing the sign of 1/H2 term inside the action integral with the surface
term neglected, from

∫
d5xE

√
g(5)(2 · 4!Ψ4/H2) to

∫
d5xE

√
g(5)(−2 · 4!Ψ4/H2). Thus, it raises

an important question, “Which method should we choose?” To our view, the confusion arises
from taking a specific vacuum in their calculation [17]. As in the θ-vacuum of QCD, we have the
α-vacuum of antisymmetric tensor field Hµνρσ . Duff took one extremum point corresponding
to α = π and Wu took another vacuum corresponding to α = 0, and they obtained different
results even though both satisfied equations of motion. As an illustration, we may consider
α-vacuum with the H2 kinetic energy term. For two antisymmetric indices from µ, ν, ρ, and σ,
there are six (4C2 = 6) independent second rank antisymmetric gauge functions, for which Aµνρ

transforms as Aµνρ → Aµνρ − ∂µΛνρ − ∂νΛρµ − ∂ρΛµν ; so we consider the maps of S3 → S3.
Namely, there exists one type of instanton solution.

Now, we can construct a gauge invariant α-vacuum, following the θ-vacuum construction of
QCD, |α〉 =

∑+∞
n=−∞ |n〉einα. In the α-vacuum, after integrating out the H2 field, what Duff

chose is α = π and what Wu chose is α = 0. However, in the α vacuum any value of α is
allowed, i.e. not restricted to α = 0 and π.

Now, this α-vacuum is defined with the 1/H2 term. We calculate the action integral for
α = 0 and π with the 1/H2 term and for any α the action integral is between them. If one
makes α a dynamical field as the QCD axion, then α is cosmologically settled to 0.

Finally, we find that there exist the parameter space where Λ = 0− dominates, which is the
proposed CC solution. A more detailed discussion can be found in [6].
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