DRIFT: Background Reduction and Spin-Dependent Limits

Daniel Walker on behalf of the DRIFT collaboration
Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK

DOI: http://dx.doi.org/10.3204/DESY-PROC-2010-03/walker_daniel

The DRIFT (Directional Recoil Identification From Tracks) collaboration operates a 1m3 directional dark matter search experiment, based on a low pressure gaseous negative ion time projection chamber (NI-TPC) in the Boulby Underground Laboratory. Recent progress includes the addition of CF$_4$ to the target volume, and a series of background reduction work. A preliminary limit on the spin-dependent WIMP-proton interaction cross-section is presented from a non-blind analysis of 47.2 days live time with a 0.8m3 30 Torr CS$_2$ - 10 Torr CF$_4$ target. The preliminary limit has a minimum of 1.1pb for a 100GeV WIMP.

1 Introduction

Dark matter halo models suggest that WIMPs may exist in the form of an isothermal sphere encompassing the Milky Way, providing an explanation for flat galactic rotation curves [1]. The interaction of WIMPs with baryonic matter is expected to be such that particle detectors of sufficient sensitivity should be able to detect the rare low energy nuclear recoils that would result (\sim 1 keV at < 1 event/kg/day). The basis of directional detection lies in the assumption of a finite Galactic orbital velocity of our Solar System, \sim 220kms^{-1} relative to the WIMP velocity distribution in the Galactic halo. There is hence a WIMP ‘wind’ experienced for a detector in the Solar System, with a preference for nuclear recoils with velocities opposite to the orbital motion through the Galaxy. This WIMP ‘wind’ will have both an annual and a sidereal variation as shown in Figure 1. Over the course of a sidereal day the direction of this will oscillate, a very powerful signature that will be difficult for any terrestrial background to mimick [2]. The DRIFT collaboration is attempting to utilise this powerful discriminant against terrestrial backgrounds through the development of a directionally sensitive dark matter detector.

2 DRIFT Overview

The DRIFT-II detector is described in detail in [3]. DRIFT-II is a 1m3 low pressure gaseous negative ion time projection chamber (NI-TPC). WIMP-nucleon interactions in the 40 Torr CS$_2$-CF$_4$ target gas are expected to create ionisation tracks a few millimetres in length. The orientation of these tracks would be biased in the direction opposite to that of the incoming WIMPs [4]. In DRIFT, the drifted tracks are negative ions, which reduces diffusion up to drift.
CS₂ is electronegative, thus primary ionisation electrons quickly attach to CS₂ molecules producing a track of negative CS₂ ions. Compared with electrons drifted alone these heavy ions give far less diffusion, down to thermal levels. This preserves the track’s directional information.

3 Backgrounds

The current dominating background in the underground DRIFT-II detector is from events termed radon progeny recoils (RPRs). Radon gas (²²²Rn and ²²⁰Rn) is present in the DRIFT detector target volume, emitted from trace levels of U and Th in the detector components. ²²²Rn is unstable and decays to ²¹⁸Po, emitting a 5.49 MeV alpha particle, which gives an ionisation track in the detector volume of length $\sim 400\text{mm}$. Because of the long track length, these events can be discriminated with high efficiency, and hence have negligible effect. $\sim 80\%$ of the time, the decay product is ²¹⁸Po⁺, an unstable, charged atom. In the electric field this drifts to the surface of the 20μm stainless steel central cathode wires [5]. The ²¹⁸Po⁺ atom then decays via emission of a 6.11 MeV alpha particle. In stainless steel this has a range of 14μm, and hence due to the geometry of the wire, this gives a 37% chance of the alpha becoming embedded in the cathode wire, with only the recoil atom (²¹⁸Po) being detected in the fiducial volume. The detection of a nuclear recoil of energy $\sim 100\text{keV}$ can potentially mimic the signal expected from a WIMP nuclear recoil. In addition, the radon decay chain results in ²¹⁰Pb plating out onto the surface of the cathode wires. Being unstable, with a half life of 22.3 years, this can be a further source of RPR background events, even after any radon inside the detector volume has been eliminated.

The first step in reducing this background is the removal of radon from the detector volume. It was found from radon emanation tests that RG58 coaxial cables (PVC coated) and ribbon cables (also PVC coated) were the dominant source of radon emanation. As suitable replacements, PTFE coated coaxial signal cables and FEP coated ribbon cables were found. After these replacements, the total number of Rn atoms per second emitted by all detector components was found to have been reduced from 0.95 ± 0.06 to 0.09 ± 0.03.

In a further step to remove any radon, in March 2008 the 1m² central cathode was etched in nitric acid to remove long lived radon progeny (²¹⁰Pb). Subsequent analysis of data from
before and after this procedure showed that the level of background events was reduced further by a factor of 6.7 ± 1.0.

4 Spin-Dependent WIMP-Proton Limit

In order to set a limit for spin-dependent WIMP interactions, a target material of 30 Torr CS$_2$ - 10 Torr CF$_4$ was chosen. This maximises the fluorine content, which has nuclei of spin 1/2 [6]. Negative ion drift and detector stability is maintained via this mixture [7]. A total of 47.2 days live time data with a continuous flow of this gas mixture was taken, this flow being to minimise radon in the gas. This yields 1.47 kg-days of fluorine fiducial mass. Preliminary limits on the SD WIMP-proton cross-section were produced using the zero background signal region and the WIMP detection efficiency. These limits are shown in Figure 2. Note that this analysis is not blind, as the signal region was chosen after an analysis of the data and background study. A fully blind analysis is planned with further data that is currently being taken.

![Preliminary limits on spin-dependent WIMP-proton coupling from 47.2 days live time with a 0.8m3 fiducial volume of 30 Torr CS$_2$ - 10 Torr CF$_4$ in the DRIFT-IIId detector underground at Boulby Mine.](image)

5 Thin Film Cathode

The RPR background discussed above results from unstable radon progeny on the surface of the central cathode wires that recoil into the fiducial volume. The alpha that should easily distinguish this event from signal becomes embedded in the central cathode wire. One way to
reduce this background is to make the cathode more transparent to alphas in order to reject these events via detection of this alpha.

Several potential cathodes were modelled, and a 0.9µm mylar sheet, evaporation coated with aluminium was found to be a suitable material. It was expected that ~ 1% of decays on the surface would result in a recoil that would be indistinguishable from a WIMP recoil, compared with 37% of radon progeny decays on the wire cathode. This suggests a potential reduction in background by a factor of ~ 40.

After testing at Occidental College, a 1m² cathode was installed on the detector at Boulby mine in March 2010. Preliminary analysis of data taken shows a reduction in background by a factor ~ 15, suggesting there may be other backgrounds within the RPR region introduced by the thin film cathode. A study is currently underway to understand these backgrounds for the proposed blind analysis.

Acknowledgments

We would like to acknowledge the support of Cleveland Potash Ltd, operators of Boulby Mine, NSF and STFC.

References

