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Lattice QCD is entering a new era as a theoretical machinery to elucidate the physics of

strong interactions. We review the algorithmic progress over the past decade behind this

advance, and the physics progress powered by it emphasizing flavor physics most relevant

for the Lepton Photon Conference series.

1 Introduction

Lattice QCD has been turning a corner in the last couple of years since the time of Lepton-
Photon 2007 [1]. Previously, despite the premise, it remained an approximate method requiring
extrapolations in a number of ways to extract physical information. For example, “quenching”
the quark determinant ignored the vacuum polarization effects of quarks, and unphysically
large values of quark masses in the simulations required help from phenomenological models to
estimate values for the physical quark masses.

Progress over years has been removing these restrictions one by one. Most recently, a class
of algorithms has been developed which, coupled with deepened understanding of the dynamics
of gluon and quark fields, has enabled the reduction of up and down quark masses almost
down to the physical point of a few MeV. Thus, lattice QCD is becoming a real first principle
method, not only in principle but also in practice, for calculating physical quantities directly
at the physical point.

We begin this review with a brief description of the recent algorithmic progress. We next
describe the status of lattice studies of flavor physics. Reflecting the algorithmic progress, these
studies are increasingly based on the physical point simulations. The topics center around the
precision determination of the Cabibbo-Kobayashi-Maskawa mixing matrix, and the light and
heavy quark quantities relevant for this task. We shall also make a sojourn into thermodynam-
ics of QCD matter and discuss high density region of QCD; there has been some potentially
interesting progress reported this summer.

Lattice QCD in research style has much in common with high energy accelerator experi-
ment; supercomputer installations are costly and need to be planned well ahead, and research
groups, either small or large, are generally needed to secure necessary supercomputers time al-
locations. In particular, generation of gluon configurations is an expensive affair both in terms
of computing resources and researcher power. Once generated, however, they can be exploited
in more than one ways to tap physical information buried in them. The international lattice
QCD community has been working since the summe of 2002 to develop an international data
grid infrastructure so that researchers worldwide can benefit from generated configurations. We
briefly describe this activity before concluding this review.

LP09 51



2 Going to the Physical Point
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Figure 1: Computational cost for generating
100 independent gluon configurations with the
conventional and improved HMC algorithm for
Nf = 2 + 1 QCD with the Wilson-clover quark
action.

Lattice QCD calculations have to deal with
four systematic errors, namely, (i) inclusion of
quark vacuum polarization effects, (ii) small
enough lattice spacing, (iii) large enough lat-
tice size, and (iv) physically light values for
the up, down and strange quarks. Of these
four, the quenching approximation which ig-
nores (i) became obsolete around 2000 due
to the development of dynamical quark al-
gorithms and computer power. Simulations
including a degenerate pair of up and down
quarks, and a heavier strange quark, often
dubbed Nf = 2 + 1 simulations, have be-
come routine since then. For (ii), a vari-
ety of improvement schemes have been devel-
oped, with a variable degree of success, and
are embodied in today’s simulations in one
way or another. In essence one adjusts the
form of the lattice action and operators for
observables by terms higher order in the lat-
tice spacing so that the finite lattice spacing errors in the physical observables are reduced as
much as possible. Against (iii) we have had no remedy other than to use large enough volume,
relying on increase of computing power. Finally the issue (iv) of using the light enough quark
masses has been the most difficult computational problem in lattice QCD. Until quite recently
lattice QCD simulations had to be run at the pion mass as heavy as 500MeV, and effective
theories such as chiral perturbation theory have to be evoked to carry out a long and unreliable
extrapolation to the physical point with mπ = 135 MeV.

The reason behind this difficulty is the necessity to invert the lattice Dirac operator D.
The computational cost for the inversion increases as the inverse of the minimum eigenvalue,
i.e., the quark mass, and so 1/m. In the hybrid Monte Carlo algorithm, which is standard
for dynamical quark simulations, this inversion is carried out 1/δτ ∝ 1/m times for every
gluon configuration generated. Hence the computational cost blows up at least as fast as 1/m2

for small quark masses, and more like 1/m3 if one includes autocorrelation between successive
configurations. In Figure 1 the solid line on the right shows an estimate in 2001 [2] for generating
100 independent gluon configurations for a lattice of physical size L = 3 fm at the lattice spacing
a = 0.1 fm using the standard hybrid Monte Carlo algorithm in Nf = 2 + 1 lattice QCD with
the Wilson-clover quark action. The computational cost soars far above the 10 Tflops*year
mark well before the physical pion mass. The figure shows that even if one uses a computer
which executes the lattice QCD code at the speed of 10Tflops, a full 1 year is needed just to
do simulations at an unphysically heavy pion of 260 MeV.

The recent progress came from the realization that the magnitude of gluon and quark
contributions to the force term in the hybrid Monte Carlo algorithm is stratified [3]: the gluon
contribution Fg has the largest magnitude and has short-range contributions only, next comes in
magnitude the short-range contributions of the quark force FUV

q , and finally the long-distance

part of the quark force F IR
q . There is a clear separation in the magnitude of the three terms,
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Collaboration quark action a(fm) mπL mπ (MeV) ref
MILC staggered 0.06 4.0 180 [6]
PACS-CS wilson-clover 0.09 2.3 155 [7]
BMW wilson-clover 0.09 4.0 190 [8]
RBC-UKQCD domain-wall 0.09 4.0 290 [9]
JLQCD overlap 0.11 2.8 320 [10]
ETM twisted mass(Nf = 2) 0.07 3.0 250 [11]

Table 1: Recent large-scale Nf = 2 + 1 simulations.

typically of order ||Fg|| : ||FUV
q || : ||F IR

q || ≈ 25 : 5 : 1 in simulations done today. In such
a situation, one can invoke a multi-time step evolution in the hybrid Monte Carlo algorithm
using different step sizes for the three force terms in proportion of δτg : δτUV

q : δτIR
q ≈ 1 :

5 : 25. In the standard single time step algorithm, one uses the smallest step size δτg as
the common step size for all three forces. Since the inversion of the lattice Dirac operator is
computationally dominated by the long-distance part, the multi-time step evolution can speed
up the computation roughly by a factor δτIR

q /δτg ≈ 25 simply because the number of Dirac
inversions is reduced by this factor.

Concrete implementation of the algorithm has a variety of forms. One way to separate the
ultraviolet and infrared quark modes is the Schwarz domain decomposition [3]. An alternative
is to apply the idea of mass preconditioner [4] to the quark force in the hybrid Molecular
dynamics [5]. The solid line on the left in Figure 1 shows the cost for domain-decomposed
hybrid Monte Carlo algorithm [7] as compared to that for the standard algorithm. Clearly,
reaching the physical point has become reality with 10 Tflops-class computers for the lattice
parameters given.

In Table 1 we list the parameters of representative large-scale simulations pursued today.
Except the last entry from the ETM Collaboration using the twisted mass formalism, these are
all Nf = 2 + 1 simulations fully incorporating dynamical effects of up, down, and strange sea
quarks. They utilize the algorithmic progress described above so that the pion mass is reaching
down to mπ ≈ 200 − 300 MeV. There has even been a conscious attempt by the PACS-CS
Collaboration to reach the physical point at mπ = 135 MeV, and this trend is accelerating.

We emphasize that this progress is pushing lattice QCD to an entirely new stage. The quark
mass dependence of physical observables is difficult to control because of potential logarithmic
singularities reflecting the infrared divergences at the chiral limit. With the possibility of making
calculations directly with the physical pion mass, we no longer have to worry about this issue.
In addition, there certainly is esthetic appeal in the ability to work with the physical pion mass
since we shall no longer be simulating but actually calculating the strong interaction as it is
taking place in Nature.

3 Fundamental Constants

The values of quark masses are one of the fundamental quantities of Nature which require lattice
QCD to pin down. Accurate control of the behavior of hadron masses at physically small up
and down quark masses as well as that of renormalization factors is required for a reliable
calculation here. Recent advance of Nf = 2 + 1 simulations toward the physically light pion
mass and non-perturbative estimates of renormalization factors help improve those two aspects.
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In the MS scheme at µ = 2 GeV, recent Nf = 2 + 1 data as reviewed in [12] are indicative of
a value m = (mu + md)/2 ≈ 3 MeV for the average up and down quark and ms ≈ 90 MeV for
strange quark.
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Figure 2: QCD coupling constant as deter-
mined from experiment and lattice QCD.
The vertical band is the 2009 experimental
average [13].

Another fundamental constant characterizing
the strong interaction is the value of the QCD
coupling constant. In Figure 2 we show a compar-

ison of αMS
s (µ = MZ) from experimental deter-

minations based on perturbative QCD and from
lattice QCD. The experimental average this year

[13] is given by αMS
s (µ = MZ) = 0.1186± 0.0011.

The most elaborate lattice determination is from
HPQCD whose value in 2008 [14] has been up-

dated this year to αMS
s (µ = MZ) = 0.1184 ±

0.0004 [15] . Again the lattice value is based on
Nf = 2 + 1 simulations, continuum extrapolated,
and includes estimate of systematic errors. The
agreement is quite remarkable, and attests to the
fact that the single coupling of QCD describes the
dynamics of strong interaction from ultraviolet to
infrared scales.

4 Exploring Flavor Physics

4.1 Constraints on the Cabibbo-Kobayashi-Maskawa Matrix elements

quantity value error

B̂K 0.725± 0.028 4%
ξ 1.243± 0.028 2%
|Vub|excl 3.42± 0.37× 10−3 11%
|Vcb|excl 38.6± 1.2× 10−3 3%
fK 155.8± 1.7 MeV 1%

Table 2: Lattice QCD inputs as of summer 2009
for constraining the CKM matrix as compiled in
[16]. Here ξ = fBs

√

BBs
/fBd

√

BBd
.

Application of lattice QCD toward flavor
physics has centered around the constraints
imposed on the Cabibbo-Kobayashi-Maskawa
mixing matrix elements. In Table 2 we quote
the values of representative observables rele-
vant for this purpose as reported by Van de
Water at the Lattice 2009 Symposium this
summer [25]. It is worth noting that these
numbers all come from Nf = 2 + 1 simula-
tions, and that all errors, either statistical or
systematic, the latter arising from chiral ex-
trapolations, finite volumes, or finite lattice
spacings, were either calculated or estimated.

We now make some specific comments.

4.1.1 Kaon B parameter

The Kaon box parameter BK enters into the determination of the CKM matrix through the
direct CP violation parameter ǫK . In Figure 3 we show how lattice determination of BK has
progressed over the years. The three points on the left show a tracking through the plenary
reports at the annual lattice symposia in the year 1996 [17], 2000 [18], and 2005 [19]. The inner
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error bars show statistical error, and the outer error bars estimates of systematic errors.
The report in 1996 reflects the calculation by the JLQCD Collaboration published next

year [20] in which the continuum limit was taken for the first time, albeit in the quenched
approximation. The staggered quark action was employed, and a large error is due to a non-
linear dependence on the lattice spacing expected for the staggered action.
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Figure 3: Renormalization group invariant BK

over the years. See text for explanation.

The box parameter is particularly sensi-
tive to the chiral property of the underly-
ing lattice action. For this reason it became
the first natural target of simulations with
the domain wall quark action pursued vig-
orously by the RBC-UKQCD Collaboration.
The first results in quenched QCD came in
around 2000 [21, 22], and by 2005 an Nf = 2
estimate with dynamical up and down quarks
was available [23].

The two points on the right are the most
recent calculations, finally in Nf = 2 + 1
QCD. The result in 2008 was reported with
the domain-wall quark action at a single lat-
tice spacing [24]. This year a new calcula-
tion using the overlap fermion formalism on
Nf = 2 + 1 dynamical gluon configurations
generated with staggered sea quarks was re-
ported [25]. The 2009 result is continuum extrapolated based on two lattice spacings. The 4%
error in the latest results for BK is smaller than the 10% error due to |Vcb|4 which enters into
ǫK .

4.1.2 A non-lattice comment on ǫK

Buras and Guadagnoli [26] made an important comment on the numerical value connecting the
experimental ǫK and theoretical BK . In the expression

ǫK = eiφǫ sin φǫ

(

ImMK
12

δMK
+

ImA0

ReA0

)

= κǫ
ImMK

12

δMK
, (1)

the second term ImA0/ReA0, being small, is usually neglected. However, with increasingly im-
proved estimates of BK and Vcb, this correction is significant. Buras and Guadagnoli estimates
that

κǫ ≈
√

2 sinφǫ

(

1− 1

ω
Re

(

ǫ′K
ǫK

)

+
1√

2|ǫK |
ImAs

ReA2

)

= 0.92± 0.02. (2)

This implies that the ǫK band in the ρ− η plane for the CKM matrix might move up by about
10%.

4.1.3 Inclusive vs exclusive determination of Vcb and Vub

The Vcb matrix element can be determined by combining the experimental B → D∗ rate with
a lattice determination of the corresponding form factor [27], and similarly for the Vub matrix
element via the B → π decay [28]. The lattice numbers have not changed since 2008, and the
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values for Vcb and Vub still differ from the estimates [29] combining the inclusive decay rates
with non-lattice calculations of decay amplitudes at a two σ level. The situation is illustrated
in Figure 4.
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Figure 4: Vcb and Vub matrix element as determined from exclusive rates and lattice form factor
(filled circles) and inclusive rates and non-lattice transition amplitude estimates (open circles).

4.1.4 D meson decay constants
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Figure 5: Lattice (filled symbols) and ex-
perimental (open symbols) determination
of D and Ds meson decay constant from
2007 to 2009.

In Figure 5 we compare lattice results for the D
and Ds meson decay constant against experiment.
The latest 2009 experimental numbers from CLEO
[30] are fD = 205.8± 8.9 MeV and fDs

= 259.5±
7.3 MeV.

On the lattice, there has been no change in the
value from HPQCD Collaboration [31] who uses
the HISQ form of the staggered quark action for
the charm quark. The discrepancy in fDs

still re-
mains.

The estimates from Fermilab-MILC Collabora-
tion who uses the Wilson-clover quark action has
been updated this summer [32] due to a 2.3% revi-
sion in the lattice scale in physical units, and the
numbers have gone up. Within the relatively large
error of about 4%, they are consistent with exper-
iment. Lattice QCD has to resolve the difference
between the HISQ and Wilson-clover determina-
tions which is a systematic effect.

4.2 CKM unitarity

In Table 3 we present the status with the unitarity check of the CKM matrix using as much
lattice input as possible. For the first row, the very precise value for Vud comes from a non-
lattice analysis of the nuclear transition rates [33]. The Vus is calculated from experimental
K → π decay rate and an Nf = 2 + 1 lattice QCD determination of the form factor [34], and
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Vub is taken from the lattice determination from the exclusive B → π decay [28] as discussed
in Subsection 4.1.3. The first row unitarity holds to within 0.1%.

Vud Vus Vub

∑

j |Vuj |2 − 1

0.97425 0.2246 0.00342 -0.0004
±0.00022 ±0.0012 ±0.00037 ±0.0013
Vcd Vcs Vcb

∑

j |Vcj |2 − 1

0.239 0.969 0.039 -0.002
±0.032 ±0.105 ±0.001 ±0.110

Table 3: First and second row unitarity of the CKM ma-
trix

The status with the second row
is far less satisfactory. The numbers
for Vcd and Vcs are from 2004 [35],
which have not been superceded
since then, and Vcb from 2008 [27].
Clearly charm physics on the lattice
has to improve by at least an or-
der of magnitude in precision. The
trouble has been that the charm
quark mass of mc ∼ 1.5 GeV is
uncomfortably close to the lattice

spacing a−1 ∼ 2 GeV which has been typically used in lattice calculations. In order to control
systematic errors coming from mca being not small, Nf = 2 + 1 simulations at smaller lattice
spacings are required. Large-scale simulations are moving in this direction, so hopefully there
will be progress here in the near future.

4.3 Lattice calculation of ǫ′/ǫ

Successful calculation of the CP violation parameter ratio ǫ′/ǫ has been a major challenge
in lattice QCD since the middle of 1980’s. Chiral symmetry turned out crucial to control
renormalization and large fluctuations of ultraviolet origin in the Penguin contributions. It was
only in 2003 that results with meaningful error estimations were obtained with domain-wall
QCD [36, 37]. The calculations relied on the rewriting of the two-body K → ππ amplitude in
terms of the one-body K → π and K → vacuum amplitude to lowest order of chiral perturbation
theory. It was quite a disappointment to find that the results do not agree with experiment
even in sign. While it was not clear if quenching was the cause or possible failure of chiral
perturbation theory in the range of pion mass mπ ≈ 0.5 MeV is to be blamed, the severe
lesson taught us that full QCD calculations directly addressing the two-body decay amplitude
is needed.

The theoretical framework for this purpose was laid down in 2001 [38]; one chooses a lattice
volume L3 such that the K meson energy EK(L) on this volume matches the two-pion energy
at the same volume Eππ(L). One can then prove that the lattice value for the two-body decay
amplitude 〈K|HW |ππ〉lattice calculated on this volume is proportional to the physical amplitude
〈K|HW |ππ〉physical up to a calculable factor.

This framework was applied to the isospin I = 2 sector last year using the domain wall
QCD in the quenched approximation [39]. In this isospin channel, the troublesome Penguin
contribution is absent, and previous attempts have already yielded values in agreement with
experiment. The advance achieved by the new calculation is the working proof that the finite-
volume method works for the K meson decay.

The calculation in the isospin I = 0 channel is much harder, but we can expect progress as
Nf = 2 + 1 full QCD calculations are steadily progressing toward large volume and physical
pion mass.
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5 Exploring High Density

Temperature and density are two dials which allow us to explore the dynamics of QCD rele-
vant under the extreme conditions in the Early Universe or in relativistic heavy ion collision
experiments. At zero density the phase diagram as a function of temperature and the number
of quarks has been studied extensively in the past. Theoretically the order of the transition
from hadron gas to quark gluon plasma is sensitively dependent on the up, down and strange
quark masses. The most recent calculation in 2006 [40] using finite-size scaling analyses made
a strong case that the transition is a crossber at a temperature range Tc ≈ 150− 170 MeV for
the physical quark mass. There has been no major change since this work.

On the other hand, much less is known on the phase diagram of QCD at finite density. This
is due to the difficulty, in spite of many attempts, to resolve the sign problem, i.e., the quark
determinant for non-zero quark chemical potential µq becomes complex, and hence Monte Carlo
methods break down. There are indications, based on the reweighting technique [41] and the
method of Taylor expansion in µq [42] that the crossover behavior at zero density continues into
the region of non-zero density but turns into a first-order phase transition through a critical
point.

Most simulations for non-zero density have been attempted with the chemical potential
formalism, i.e., using the grand partition function. In principle one can equally well use the
canonical partition function in which the number of quarks Nq or baryon number nB = Nq/3
is fixed. The relation between the two partition functions are given by

Zgrandcanonical(T, mq, µB) =
∑

nB

enBµB/T Zcanonical(T, mq, nB) (3)

and hence the path integral for the canonical partition function is given by

Zcanonical(T, mq, nB) =

∫

[dU ]

[
∫ 2π

0

dφe−i3nBφdetD(U, mq, µ = iφT )

]

e−Sgluon(U) (4)

Since the quark determinant is an extensive quantity, it is important to accurately estimate the
projection of the quark determinant in this equation. An exact evaluation of the projection
[43] is computationally expensive and hence not very practical for large lattices. An interesting
idea is to apply saddle point approximation expected to be valid for large spatial volume [44].
A quantitative measure of control of the approximation is needed for this method.

This year a new attempt was made to control the projection [45].. The direct projection has
an apparent problem that cancellation of oscillations whose magnitude becomes exponentially
large in volume has to be controled. Numerically this is a difficult task, and hence the idea is
to carry out the projection to the logarithm of the determinant via

log detD(U, mq, µ) =
∑

nB

enBµB/T A(U, mq, nB) (5)

Figure 6 shows the result [45] for the chemical potential as a function of baryon number (left
panel) and the phase diagram (right panel) for Nf = 3 QCD with Wilson quark action on a
63 × 4 lattice. The cubic variation on the left panel indicates a first-order phase transition,
and the familiar Maxwell construction yields the boundary of the two-phase coexistence region
plotted on the right on the T − µ plane. We see that the coexistence region becomes narrower
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Figure 6: Chemical potential calculated as a function of baryon number (left panel) and the
two-phase coexistence region on the T − ρB (ρB = nB/V ) plane (right panel) calculated by a
microcanonical approach [45].

as the temperature increases, likely terminating at the estimated endpoint marked by an open
circle.

It may well be that the sign problem has not manifested itself in this calculation because of
the heavy pion mass (mπ ≈ 700 MeV ) and the small lattice size (63 × 4). It is nonetheless an
encouraging result and is worth pursuing as an alternative to the grand canonical approach.

6 Collaborating World-wide

Lattice QCD is practiced across the globe. There are about a dozen major centers scattered
in Japan, Australia, EU countries (including Germany, France, United Kingdom, Italy, and
Spain), USA and Canada. As of 2009 the total computing capacity employed for lattice QCD
is about half a petaflops, which is about 3% of the total world high performance computing
resources.

The most time consuming element in lattice QCD calculation is the generation of gluon
configurations with dynamical quarks. Once generated those configurations can be used by
anyone to calculate physical observables of one’s interest. Since 2002, this has motivated the
lattice QCD community to make an effort toward a world-wide collaboration called International
Lattice Data Grid (ILDG) to organize and run a data grid for gluon configurations [46].

ILDG consists of a number of regional grids, each operating on its own. For a world-wide
sharing of configurations, a standardized xml called qcdml has been defined to describe gluon
data, and standard middleware has been designed for interoperability of the regional grids
through ILDG. After 4 years of preparation, ILDG started service in June 2006 [47]. The
number of gluon ensembles (set of configurations) and downloads have been steadily increasing
over the years as shown in Figure 7. ILDG has become an established infrastructure in the
lattice QCD community, and its role will continue to increase in the years to come.

7 Conclusions

Over the last couple of years, realistic calculations directly at the physical point have finally
become reality in lattice QCD. This is a fruit of continuous effort over 25 years toward better
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Figure 7: International Lattice Data Grid for a world-wide sharing of gluon configurations.

physics understanding, better algorithms and more powerful computers. Personally I believe
that this entails a change of philosophy from “simulation” to “calculation”: if lattice spacing is
sufficiently small, there are no more approximations or extrapolations, and gluon configurations
produced on the computer is strong interaction in Nature itself.

Armed with this tool, I expect that the fundamental issues of lattice QCD as particle theory
make major progress over the next five-year range. Those include single hadron properties and
fundamental constants, precision flavor physics with errors bound below 1% level and resolution
of old issues such as K → ππ decays, and hot/dense QCD explored with chiral lattice action
on large lattices.

And there lies beyond the vast area of multi-hadron systems and atomic nuclei for our
nuclear physics colleagues to explore, e.g., nuclear force from lattice QCD, exotic nuclei with
unusual neutron/proton ratios and/or strangeness, and element synthesis in supernovae and so
on.
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Discussion

Bruno Stella (Universita Roma Tre): I think for the first time the rapporteur of
Lattice QCD does not mention glueballs. Why? Could you say something more?
Answer: I do not think there has been substantial progress in recent years, especially
on the difficult issue of a reliable estimate of mixing of pure glue states with quark
states. Full QCD simulations necessary for this has not reached sufficient statistics so
far.
Guido Altarelli (Roma III and CERN): Concerning the discrepancies between
the lattice determinations of fDs and the data,is the smallness of the quoted error by
HPQCD really justified, also in view of the FNAL/MILC more recent central values
and quoted errors?
Answer: This is a difficult question to answer. I suppose they have a large number
of data points in quark masses and lattice spacings to estimate the value for physical
quark masses and the continuum limit, which helps reduce the error. Their light quark
mass also goes down to a fairly small value so that the ambiguity of chiral extrapolation
is smaller.
Markus Wobisch (FNAL): You mentioned the possibility of computing properties
of hadrons. Could you also compute the distributions of partons inside hadrons?
Answer: Yes, lattice methods can compute the moments of structure functions. The
computations becomes progressively difficult for higher moments, however, so only
several moments are feasible so far.
Vera Lüth (SLAC): Current lattice calculations are NF = 2 + 1. Can we hope to
extend calculations to include charm and eventually beauty? At present the dominant
error on Vub determinations are quark masses, especially mb.
Answer: Dynamical charm is already withing the scope of full QCD simulations. Dy-
namical beauty is still a future problem since the lattice spacing of larger than 5GeV
necessary for this requires larger than petaflops scale computing resources. However,
the estimate of mb will not be affected much by dynamical beauty effects since the b
quark is much heavier than the typical QCD scale.
Bennie Ward (Baylor University): In your plot of the hadron spectrum you only
show a small subset of what is in the PDG. Are you cherry-picking? Can you predict
glueballs, hybrids, molecules, pentaquarks, etc?
Answer: Confirming the ground state spectrum, though a small subset of PDG, is a
basic step to establish the validity of QCD and the predictive capability of lattice QCD.
Predictions of other states including exotics will come step by step.
Ahmed Ali (DESY): This question concerns chiral extrapolation on the lattice. Are
the pion mass and the light quark masses for which lattice simulations are currently
being done at a stage that the chiral perturbation theory can be checked in the sense
that some of the constants in chiral pert. theory are now determined by lattice?
Answer: Yes, the low energy constants such as l3 and l4 have been determined with
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reasonable precision. Further the convergence of ChPT has been examined. At present
SU(3) ChPT does not seem to be convergent at the physical strange quark mass,
while SU(2) ChPT seems to be convergent for physical up-down quark mass in the
pseudoscalar sector. The situation may depend on the quantity.
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