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Considering Strong Scaling Ansatz (SSA) which predicts Ue3 = 0 and the inverted mass
hierarchy, we discover the possibility to realize the normal mass hierarchy by introducing
tiny breakings of SSA. In this case, we can automatically reproduce the small mass squared
difference ratio (∆m2

⊙/∆m2

atm ≪ 1) instead of the suppressed Ue3 (|Ue3| ≪ 1).

1 Introduction

We start with the definition of the PMNS matrix UPMNS [1], which gives the transformation of
flavor eigenstate of neutrinos νf (f = eAµAτ) into mass eigenstate of neutrinos νi(i = 1A2A3)

as νf =
3

∑

i=1

(UPMNS)fi νi. We employ UPMNS determined to be [2]:

UPMNS = Ω





c13c12 c13s12e
iρ s13e

−iδ

−s12e
−iρc23 − s13e

iδc12s23 c12c23 − s13e
iδs12e

iρs23 c13s23

s12e
−iρs23 − s13e

iδc12c23 −c12s23 − s13e
iδs12e

iρc23 c23c13



 K, (1)

where K = diag
(

eiβ1 eiβ2 eiβ3
)

, Ω = diag
(

1 eiγ e−iγ
)

and θij is the νi − νj mixing
angle. Assuming the seesaw model [3], we obtain the flavor neutrino mass matrix as

Mν = −〈v〉2 Y T
ν M−1

R Yν (2)

through the higgs mechanism, where Yν is a coupling constant of the higgs interaction and 〈v〉
is a vacuum expectation value of the higgs boson. UPMNS can be transformed from Eq.(1) into
the Particle Data Group (PDG) version [4] by removing additional phases of ρ and γ. It should
be noted that observable Dirac CP phase is given by δCP = δ + ρ and Majorana CP phase β1

is changed into β′1 = β1 − ρ in the case of UPMNS of the PDG version. The experimental data
[5] shows us atmospheric neutrino mass squared differences ∆m2

atm ≡ m2
3−

(

m2
2 + m2

1

)/

2, solar
neutrino mass squared differences ∆m2

⊙ ≡ m2
2 −m2

1 and mixing angles as follows:

sin2 θ13 < 0.016+0.01
−0.01, sin2 θ23 ≈ 0.466+0.073

−0.058, sin2 θ12 ≈ 0.312+0.018
−0.019,

∆m2
atm ≈ 7.67+0.16

−0.19 × 10−5, ∆m2
⊙ ≈ 2.39+0.08

−0.11 × 10−3.
(3)

Strong Scaling Ansatz (SSA) [6] requires that all ratios of Mfµ/Mfτ are equal as

c ≡ −σ
Meµ

Meτ

= −σ
Mµµ

Mµτ

= −σ
Mτµ

Mττ

(4)
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where σ ≡ ±1. There is an advantage of SSA that the condition of Eq.(4) is invariant under the
renormalization running because its effects can be canceled between numerator and denominator
[6]. Under the condition of Eq.(4), Mν and also M ≡ M †

νMν are determined as follows:

M (+)
ν =





a beiχ −σb
c

eiχ

beiχ d −σ d
c−σb

c
eiχ −σ d

c

d
c
2



 , M
(+) =





A |B| eiη −σ|B|
c

eiη

|B| e−iη D −σD
c

−σ|B|
c

e−iη −σD
c

D
c
2



 . (5)

We, respectively, use χ and η in Eq.(5) to denote phases of eµ and eτ elements of M
(+)
ν and

M
(+), while a, b, d, A, D, c are real. We calculate the eigenvectors of M

(+), which does not
contain the Majorana CP phases, and obtain

|λ+〉 =





cos θ
− sin θ c√

1+c
2
e−iη

sin θ σ√
1+c

2
e−iη



 , |λ−〉 =





sin θeiη

c√
c
2+1

cos θ

− σ√
c
2+1

cos θ



 , |λ〉 =
1√

1 + c2





0
σ
c



 , (6)

where tan θ = |B|
√

1+c
2

c(λ−−A) . Corresponding eigenvalues are given by λ± = 1
2

{(

D
(

1 + 1
/

c
2
)

+ A
)

± ω
}

and λ = 0, where ω =

√

{

D
(

1 + 1
/

c2
)

−A
}2

+ 4 |B|2
(

1 + 1
/

c2
)

. We obtain Ue3 = 0 if |λ〉 is

assigned to the state of ν3. In this case, we also obtain θ = θ12, t23 = σ/cA ρ = η. This proper-
ties of SSA allow us to reproduce experimental data of Eq.(3) whose best fit values indicate the
smallness of θ13 and the small deviation of θ23 from σπ/4. However, we couldn’t have realized
any hierarchy except for the inverted mass hierarchy [6].

We have discovered the possibility to realize the normal mass hierarchy in the paradigm of
SSA when |λ〉 is assigned to the state of ν2. In this proceedings, we call the former case (C1)
and the latter case (C2). In (C2), we obtain θ12 = 0 instead of θ13 = 0 though it should be
improved by introducing tiny breakings of SSA as well as θ = θ13, t23 = −σc and δ = −η. In
the next section, we consider a tiny breaking term to be added to Mν in the case of (C2).

2 Effects of breakings of SSA

Breakings of SSA can be defined by adding mass matrix M
(−)
ν to M

(+)
ν as Mν = M

(+)
ν + M

(−)
ν

where

M (−)
ν = ε





0 b′ σb′/c
b′ d′ + d′′ σd′/c

σb′/c σd′/c (d′ − d′′)
/

c
2



 . (7)

The parameter ε denotes the tiny SSA breaking and tan θ23 abbreviated as t23 is written as
t23 = −σc(1−∆)/(1 + ∆) in (C1) and t23 = σ (1−∆)/c (1 + ∆) in (C2), where ∆ is also small
because it induces to break SSA. We neglect the second order of breaking terms of SSA. Using
formulas of [2], we easily compute the masses of neutrinos up to O(ε) as

m1e
−2iβ′1 ≈ 1

2
e2iρa + d0 − z1, m2e

−2iβ2 ≈ 1

2
e2iρa + d0 + z1, m3e

−2iβ3 ≈ 2εd′, (8)

where z1 = 2b0ei(ρ+χ)

c

√
2 sin 2θ12

in (C1),

m1e
−2iβ′1 ≈ 1

2
e2iρa + εd′ − z2, m2e

−2iβ2 ≈ 1

2
e2iρa + εd′ + z2, m3e

−2iβ3 ≈ 2d0, (9)
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where z2 =
√

2eiρ εb′+(iγ +∆)eiχb0
sin 2θ12

in (C2). As a result, we observe the new possibility of the
normal mass hierarchy in (C2) though we need the condition of |a| ≪ 1, whereas we are only
allowed to have the inverted mass hierarchy in (C1) as have been already known.

The formulas enable us to readily understand the dependdence of mixing angles on flavor
neutrino masses as

tan 2θ12e
iρ ≈ 2

√
2b0(a0eiχ+2d0e−iχ)
c{4(b20+d2

0)−a2
0} ,

tan 2θ13e
−iδ ≈ σ2

√
2

b0(a0eiχ + 2d0e−iχ)(∆− iγ)− ε(a0b′+ b0d′′e−iχ)
a2
0+2b20

,
(10)

for (C1),

tan 2θ12e
iρ ≈ −2

√
2

ε(a0b′+b0d′′e−iχ)+b0(∆+iγ)(a0eiχ+2d0e−iχ)
a2
0+2b20

,

tan 2θ13e
−iδ ≈ −σ2

√
2b0

a0eiχ+2d0e−iχ

c(4d2
0−a2

0)
,

(11)

for (C2), where γ is also a small parameter because it obviously breaks SSA. We naturally
obtain the smallness of θ13 in (C1), while we need

∣

∣b0

(

a0e
iχ + 2d0e

−iχ
)∣

∣ ≪
∣

∣4d2
0 − a2

0

∣

∣ for (C2).
Moreover, Dirac CP phase δCP = δ + ρ and Majorana CP phases β′1, β2 and β3 are found to
large in both cases. Mass squared differences in (C2) are calculated from Eq.(9) as

∆m2
⊙ ≈ 2

√
2

sin 2θ12
Re

[(

e−iρa + 2εd′eiρ
) {

εb′ + (iγ + ∆) eiχb0

}]

,

∆m2
atm ≈ 4d2

0 − 1
4a (a + 4εd′ cos 2ρ) .

(12)

Therefore, there is another virtue of SSA in (C2) that smallness of the ratio of the mass squared
difference ∆m2

atm/∆m2
⊙ ≪ 1 is automatically satisfied as suggested by experiment because of

the smallness of ε, γ and ∆, which serve as the SSA breaking parameters.
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