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We show a new class of embedding solutions of D5 brane, which wraps on S
5 in the AdS×S

5

space-time and contains fundamental strings as U(1) flux to form a baryon vertex. This
configuration is regarded as a D5− D̄5 bound state, and we propose this as a baryonium
state. We could also show their stability.

1 String Model

Quark confinement is well pictured by colored string confining quarks. The string has “orien-
tation” because, when the string is cut by pair creation of quarks, the sequence of q and q̄ is
unique. When we define the orientation by the direction toward a confined quark, there should
exist in the baryon a “singular point” from which the three strings emerge and where the three
colors are neutralized. This point is called “ junction” . In 1977 we proposed string junction
model[1] (abbreviated as SJM), and investigated the nature of baryon and baryonium shown
in Fig.1. The reason why they are so difficult to be observed was attributed to their complex
structure, in particular, to the nature of junction.
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Figure 1: Baryon and baryonium in the string-junction model.

We try to explain the baryon and baryonium states in the framework of AdS/QCD. @They
are expressed by D5(D̄5) brane in a 10D supergravity bavkground which is dual to a confining
gauge theory.

2 D5 brane in AdS5 × S5 space

We derive baryon and baryonium states from the equations of motion by the action of D5-brane
which is embedded in a supersymmetric 10d background of type IIB theory. The background
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solution should be dual to confining gauge theory and we consider the following background,

ds2
10 = eΦ/2

(

r2

R2
ηµνdxµdxν +

R2

r2
dr2 + R2dΩ2

5

)

. (1)

The dilaton Φ and the axion χ are given as

eΦ = 1 +
q

r4
, χ = −e−Φ + χ0 , (2)

and with self-dual Ramond-Ramond field strength

G(5) ≡ dC(4) = 4R4

(

vol(S5)dθ1 ∧ . . . ∧ dθ5 −
r3

R8
dt ∧ . . . ∧ dx3 ∧ dr

)

. (3)

The D5-brane action is thus written as by the Dirac-Born-Infeld (DBI) plus WZW term

SD5 = −T5

∫

d6ξe−Φ

√

− det
(

gab + F̃ab

)

+ T5

∫

d6ξÃ(1) ∧ G(5) , (4)

gab ≡ ∂aXµ∂bX
νGµν , Ga1...a5

≡ ∂a1
Xµ1 . . . ∂a5

Xµ5Gµ1...µ5
.

where F̃ab = 2πα′Fab and T5 = 1/(gs(2π)5ls
6) is the brane tension. And G(5) denotes the

induced five form field strength.

2.1 Baryon(D5 brane)

The D5 brane is embedded in the world volume ξa = (t, θ, θ = 2, ...θ = 5). Under the some
assumptions, we obtain an energy functional from the above action,

U =
N

3π2α′

∫

ds eΦ/2

√

r2θ̇2 + ṙ2 + (r/R)4ẋ2
√

Vν(θ), (5)

Vν(θ) = D(ν, θ)2 + sin8 θ. (6)

Then, we obtain the following canonical equations of motion,

ṙ = pr , ṗr =
2

r5
p2

xR4 +
p2

θ

r3
+

1

2
(Vν(θ)) eΦ∂rΦ, (7)

θ̇ =
pθ

r2
, ṗθ = −6 sin4 θ (πν − θ + sin θ cos θ) eΦ, (8)

ẋ =
R4

r4
px, ṗx = 0 (9)

Baryon is given by the classical solution with the boundary conditions[2],
r(θc) = rc, r(π) = rmax, r(0) = r0, x(θc) = 0.

3 Baryonium(D5-anti D5 brane)

Baryonium is obtained by the classical solution by the same equations as baryon with the
different boundary conditions,

θ′(0) = 0, θ(±xc) = ±π. We obtain the baryonium solutions numerically and calculate
their energies[3].
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3.1 Stability

In ordr to consider the fluctuations, we back to the action of D5 brane (4), and expand it with
respect to the fluctuations, δr(t, θ) = r − r̄, δx(t, θ) = x − x̄ and δAt(θ, t) = At − Āt, up to
their quadratic terms. Here r̄, Āt(θ) and x̄ are the solutions of the equations of motion. The
modified quadratic term is obtained as

L̃(2) = Ã(2)δr
2 +

B(0)

2

[(

R4

r2
+ x′

2
) (

−δṙ2 +
( r

R

)4 1

Q(0)
δr′

2
)

+ 2x′r′δẋδṙ

+
(

r2 + r′
2
)

(

−δẋ2 +
( r

R

)4 1

Q(0)
δx′

2
)

−

( r

R

)4 1

Q(0)
2x′r′δx′δr′

]

+Q(1)r
′δr′δr + Q(2)x

′δx′δr (10)

By assuming the following form for the fluctuations,

δr(t, θ) = eiωtφr(θ), δx(t, θ) = eiωtφx(θ) , (11)

we estimate the value of frequency ω by solving the equations and obtain the stable regions(ω2 >
0) shown in Fig.2[4].
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Figure 2: The equi-ω2
2 curves in (−h,r0) plane. The equi-U curves in parameter plane. The

lines express the border where the sign of ω2 changes. And a blob denotes U = Umin point.
The results for ν = 0.3(left) and ν = 0.5(right) are shown.
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