Combined Limits on Anomalous Couplings at DØ

Jadranka Sekaric

Florida State University, 513 Keen Building, Tallahassee, FL 32306-4350, USA

We present the first combination of limits across different diboson production processes using 1 fb⁻¹ of data collected by the DØ detector at the Fermilab Tevatron collider. We set the most stringent limits on anomalous values of the γ/ZWW couplings at a hadron collider and present the most stringent measurements to date for the W boson magnetic dipole and quadrupole moments.

1 Phenomenology

Study of the vector bosons interactions and the trilinear gauge boson couplings (TGCs) [1] provides a test of the electroweak sector of the Standard Model (SM). Any deviation from predicted SM values could indicate New Physics (NP). The TGCs contribute to diboson production via s-channel diagram. Thus, production of WW contains two trilinear vertices, γWW and ZWW, while the WZ production contains the ZWW vertex only. The effective lagrangian which describes γ/ZWW vertices contains 14 charged TGCs which are grouped according to the symmetry properties into C (charge conjugation) and P (parity) conserving couplings. In the SM all couplings vanish except $g_1^V = \kappa_V = 1$ ($V = \gamma/Z$). The value of g_1^{γ} is fixed by electromagnetic (EM) gauge invariance ($g_1^{\gamma} = 1$) while the value of g_1^Z may differ from its SM value. Considering the C and P conserving couplings only, five couplings remain, and their deviations from the SM values are denoted as the anomalous TGCs: Δg_1^Z , $\Delta \kappa_{\gamma}$, $\Delta \kappa_Z$, λ_{γ} and λ_Z . Couplings g_1^Z , κ_γ and λ_γ also relate to the W boson magnetic dipole moment μ_W and electromagnetic quadrupole moment q_W as $\mu_W = \frac{e}{2M_W}(g_1^\gamma + \kappa_\gamma + \lambda_\gamma)$ and $q_W = -\frac{e}{M_W^2}(\kappa_\gamma - \lambda_\gamma)$. Anomalous TGCs could cause an unphysical increase in diboson production cross sections as the center-of-mass energy, $\sqrt{\hat{s}}$, approaches NP scale, Λ_{NP} . These divergences are controlled by a form factor $\Delta a(\hat{s}) = \Delta a_0 / (1 + \hat{s} / \Lambda_{NP}^2)^n$ for which the anomalous coupling vanishes as $\hat{s} \to \infty$. The coupling a_0 is a low-energy approximation of the coupling $a(\hat{s})$ and n=2 for γWW and ZWW couplings.

Because experimental evidence is consistent with the existence of an $SU(2)_L \times U(1)_Y$ gauge symmetry, it is reasonable to require the effective lagrangian to be invariant with respect to this symmetry. This gauge-invariant parametrization [2] gives the following relations between the $\Delta \kappa_{\gamma}$, Δg_1^Z and λ couplings: $\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_{\gamma} \cdot \tan^2 \theta_W$ and $\lambda = \lambda_Z = \lambda_{\gamma}$. We refer to this relationship as the $SU(2)_L \times U(1)_Y$ respecting scenario with three different parameters, $\Delta \kappa_{\gamma}$, λ and Δg_1^Z .

A second interpretive scenario, referred to as the equal couplings $(ZWW = \gamma WW)$ scenario [3], specifies the γWW and ZWW couplings to be equal. In this case, $\Delta g_1^Z = \Delta g_1^\gamma = 0$ and the relations between the couplings become: $\Delta \kappa = \Delta \kappa_Z = \Delta \kappa_\gamma$ and $\lambda = \lambda_Z = \lambda_\gamma$.

LP09

2 Combined Final States

The TGC limits presented here are derived combining previously published measurements in four diboson final states: $W\gamma \rightarrow \ell\nu\gamma$, $WW/WZ \rightarrow \ell\nu jj$, $WW \rightarrow \ell\nu\ell'\nu$, and $WZ \rightarrow \ell\nu\ell'\bar{\ell}'$ [4]. The process $W\gamma \rightarrow \ell\nu\gamma$ is sensitive to the $WW\gamma$ coupling. The 0.7 fb⁻¹ of data were analyzed to select events with an electron (muon) with $E_T > 25$ GeV (20 GeV), $\not{E}_T > 25$ (20) GeV and a photon with $E_T^{\gamma} > 9$ GeV. It is required that the photon and lepton are separated in space of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.7$. The final state radiation is suppressed requiring the transverse mass of the lepton, photon, and \not{E}_T to be > 120 (110) GeV. In total 263 candidate events are observed. After subtracting backgrounds, the signal is measured to be $187 \pm 17_{\text{stat}} \pm 4_{\text{sys}}$ events and is consistent with the SM prediction of 197 ± 15 events. The photon spectra are input for the combination. For $W\gamma$ production in presence of anomalous TGCs, spectra were simulated using the Baur Monte Carlo (MC) event generator [5].

The $WW \rightarrow \ell \nu \ell' \nu$ analysis uses 1 fb⁻¹ of data. For all channels (*ee*, $e\mu$, and $\mu\mu$), the leading lepton must satisfy $p_T > 25$ GeV and the trailing lepton with $p_T > 15$ GeV. Both leptons must be of opposite charge. In the data 100 candidate events are observed, which is consistent with the prediction of 102.9 ± 4.4 events. Two-dimensional histograms of leading and trailing lepton p_T are used as input in the combination. Histograms are generated using the HZW MC.

Analysis of $WZ \to \ell \nu \ell' \bar{\ell}'$ final states uses 1 fb⁻¹ of data. Four final states (*eee*, *eeµ*, *µµe*, and *µµµ*), require three leptons with $p_T > 15$ GeV and $\not{E}_T > 20$ GeV. To select Z candidates, like-flavor leptons must satisfy 71 < $m_{ee} < 111$ GeV or 50 < $m_{\mu\mu} < 130$ GeV. To reduce $t\bar{t}$ background events the magnitude of the vector sum of the charged lepton p_T and the \not{E}_T must be less than 50 GeV. The sum over all channels yields 13 candidate events which is in agreement with the SM prediction of 13.7 ± 1.2 events. The p_T^Z of the Z boson is used in the combination and simulated using the HZW MC.

3 Results

The one-dimensional 68% and 95% C.L. limits for each coupling are shown in Table 1 for two scenarios. The measured values and the one-dimensional 68% C.L. intervals of the W boson magnetic dipole and electric quadrupole moments for $SU(2)_L \times U(1)_Y$ scenario (with $g_1^Z = 1$) are $\mu_W = 2.02^{+0.08}_{-0.09} (e/2M_W)$ and $q_W = -1.00 \pm 0.09 (e/M_W^2)$, respectively. Two-dimensional surfaces in $q_W - \mu_W$ space for both scenarios are shown in Figure 1.

4 Summary

Presented results are the most stringent limits on anomalous values of γWW and WWZ TGCs measured from hadronic collisions to date. The 95% C.L limits in both scenarios improve relative to the previous combined DØ [6] and CDF [7] results by a factor of ~ 3. Our measurements

LP09

Par.I	Min.	68% C.L.	95% C.L.	Par.II	Min.	68% C.L.	95% C.L.
$\Delta \kappa_{\gamma}$	0.07	-0.13, 0.23	-0.29, 0.38	$\Delta \kappa$	0.03	-0.04, 0.11	-0.11, 0.18
Δg_1^Z	0.05	-0.01, 0.11	-0.07, 0.16				
λ	0.00	-0.04, 0.05	-0.08, 0.08	λ	0.00	-0.05, 0.05	-0.08, 0.08

Table 1: One-dimensional minimum and combined 68% and 95% C.L. limits on anomalous γ/ZWW couplings for two scenarios: $SU(2)_L \times U(1)_Y$ (Par.I) and equal couplins (Par.II), both with $\Lambda_{NP} = 2$ TeV.

Figure 1: Two-dimensional 68% and 95% C.L. limits for the W boson electric quadrupole moment versus the magnetic dipole moment for (a) $SU(2)_L \times U(1)_Y$ scenario and (b) equal couplings scenario ($\Lambda_{NP} = 2$ TeV in both scenarios).

are comparable to that of an individual LEP2 experiments [8] even though all four analyses considered in this combination are limited by statistics. The DØ experiment also sets the most stringent measurements of μ_W and q_W moments to date.

References

- [1] K. Hagiwara, J. Woodside, and D. Zeppenfeld, Phys. Rev. D41 2113 (1990).
- M. Bilenky, J. L. Kneur, F. M. Renard and D. Schildknecht, Nucl. Phys. B 409 22 (1993);
 M. Bilenky, J. L. Kneur, F. M. Renard and D. Schildknecht, Nucl. Phys. B 419 240 (1994).
- [3] K. Hagiwara, J. Woodside, and D. Zeppenfeld, Phys. Rev. D41 2113 (1990).
- [4] V.M. Abazov et al., (DØ Collaboration), Phys. Rev. Lett. 100 241805 (2008);
 V.M. Abazov et al., (DØ Collaboration), Phys. Rev. D80 053012 (2009);
 V.M. Abazov et al., (DØ Collaboration), Phys. Rev. Lett. 103 191801 (2009);
 V.M. Abazov et al., Phys. Rev. D76 111104(R) (2007).
- U. Baur and E.L. Berger, Phys. Rev. D41 1476 (1990);
 U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D48 5140 (1993).
- [6] B. Abbott et al., (DØ Collaboration), Phys. Rev. D60 072002 (1999).
- [7] T. Aaltonen et al., (CDF Collaboration), Phys. Rev. D76 111103(R) (2007).
- [8] P. Abreu *et al.*, (DELPHI Collaboration), Phys. Lett. B **502** 9 (2001);
 G. Abbiendi *et al.*, (OPAL Collaboration), Eur. Phys. J. C**33** 463 (2004);
 P. Achard *et al.*, (L3 Collaboration), Phys. Lett. B **586** 151 (2004);
 S. Schael *et al.*, (ALEPH Collaboration), Phys. Lett. B **614** 7 (2005).