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These conference proceedings cover various aspects of neutrino propagation through the
high matter and neutrino densities near the proto-neutron star in a core-collapse supernova.
A significant feature of this regime is the impact of neutrino-neutrino interactions. Prop-
erties of this non-linear many-neutrino system are discussed with a particular emphasis on
its symmetries.

1 Introduction

Almost all the gravitational binding energy of the pre-supernova star is converted into neu-
trinos and antineutrinos in a core-collapse supernova, yielding a very large neutrino flux [1].
Consequently neutrino properties play a very important role, not only in the dynamics of a
core-collapse supernova, but also in the r-process nucleosynthesis if supernovae are the ap-
propriate sites [2]. Neutrinos traveling through supernovae undergo matter-enhanced neutrino
oscillations (due to the MSW effect resulting from neutrinos interacting with the background
electrons and positrons) much like neutrinos traveling through the Sun or the Earth [3]. How-
ever, unlike these latter sites, in a supernova environment it is possible to have matter-enhanced
antineutrino flavor transformations [4]. It was ascertained that, because of the large number
of neutrinos (~ 10°®) emitted by the proto-neutron star, background neutrinos also contribute
to the coherent forward scattering of neutrinos in a core-collapse supernova [3, 5]. Once the
importance of the flavor-mixing non-diagonal terms coming from neutrino-neutrino interactions
was highlighted [6], it became clear that one deals with a genuine many-body problem with
one- and two-body interactions.

The significance of the neutrino-neutrino interactions in core-collapse supernovae [7] and the
possibility of the occurrence of collective effects due to those interactions were recognized early
on [8]. In a supernova environment neutrino-neutrino interactions [6] play a crucial role both
for neutrinos and antineutrinos [7, 8, 9, 10]. Since such collective neutrino oscillations dominate
the neutrino propagation much deeper than the conventional matter-induced MSW effect, it
would impact the r-process nucleosynthesis [11, 12, 13]. There is an extensive literature on this
subject [14], a good starting point is several recent surveys [15, 16, 17]. An algebraic approach
to this problem was worked out in Ref. [18] from a many-body point of view. Such an algebraic
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approach is helpful in exploring the hidden symmetries of the system. Hamiltonian describing
collective neutrino oscillations possesses an SU(N); rotation symmetry in the neutrino flavor
space [18, 19, 20]. Various collective modes, including spectral swappings or splittings arise
from this symmetry even in the inhomogeneous or anisotropic environments [19]. One expects
that such a complex nonlinear system may exhibit further symmetries. Indeed, several authors
noted the presence of various conserved quantities in the collective neutrino oscillations [21, 22].
More recently, it was shown that collective oscillations that maintain coherence can be classified
by a number of linearly-independent functions [23], implying that scalar products of a unique
linear combination of the original polarization vectors are conserved. The flavor evolution of a
dense neutrino system by taking into account both the vacuum oscillations and self interactions
of neutrinos from a many-body perspective was considered in Ref. [24]. Using the similarity
between the collective neutrino oscillation Hamiltonian and the BCS Hamiltonian one can show
that, in the single angle approximation, both the full many-body picture and the commonly-
used effective one-particle picture possess several constants of motion [25].

One appealing aspect of the core-collapse supernovae is that they are the laboratories where
diverse aspects of neutrino physics come into play. Here we concentrate on the collective behav-
ior arising from the neutrino-neutrino interactions in a supernova and omit other interesting
topics such as the role of sterile neutrinos [26] or the neutrino magnetic moment [28] in the
r-process nucleosynthesis, effects of the CP-violation [29], effects of turbulence and density fluc-
tuations [30], the role of neutrinos in shock revival [31], and neutrino signatures of black hole
formation [32].

The next chapter of this proceedings contribution describes the algebraic formulation of the
neutrino-neutrino interactions in the many-neutrino system. Chapter 3 includes a discussion
of the invariants of the Hamiltonian of this system. Brief concluding remarks are included in
Chapter 4.

2 An Algebraic Formulation of the Neutrino-Neutrino In-
teractions
For simplicity, we first consider a neutrino gas with two flavors and no antineutrinos. Matter

and flavor basis creation and annihilation operators for a neutrino with momentum p and spin
s are related as

a1(p, s) = cosf a.(p, s) —sinb a,(p, s) (1)
az(p, $) = sinf a.(p, s) + cosb a;(p, s). (2)
It is easy to show that the flavor isospin operators defined as
j;,s = al(p, 3)a$(p7 8) ’ jl;,q = al(p, S)CLe(p’ 3) >
A 1
7. = 5 (1B, 9)ac(p.5) — al(p,5)au(p, 5))

form an SU(2) algebra:
A

20
p,s’ Ip,s»

Jqr] = 20pq0sr I3

p,s [ jcir] - iépqésrjg:,s .

One can show that the particle mixing given in Eqs. (1) and (2) is generated by this algebra:
UTal(pa S)U = a‘e(p7 8)
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with
U _ ez:ptanéJ;r e z:pln(cos2 0)J§ e—zptanéJ}T. (3)

After subtracting a term proportional to the identity, the one-body Hamiltonian including
interactions with the electron background takes the form

. om2 . - o
H,=>" <—B Sy — \@GFNEJP)
p

2p

where one defines

B = (sin 26,0, — cos 20).

The neutrino-neutrino interaction term in the Hamiltonian is

. 2 N N
H,, = fVG ENT (1= costpq) Jp - Iy (4)

p.q

where ¥pq is the angle between neutrino momenta p and q. In Eq. (4) (1 — cos?d) terms follow
from the V-A nature of the weak interactions.
The evolution operator

jau
ot
can be calculated [18] as a path integral using SU(2) coherent states:

=(H, +H,,)U

12(8) = exp ( / dpz(p,t>J+<p>) 6%, 16 = [[al@)I0)

to obtain
(2 (tp)lUl=(t:) = /D[Z»Z*] exp (iS[z, 27])

where

ts z Zi_ v — yy)|2
(a1 = [ arlZE B DB g o,

(2()[=(1))
The stationary phase approximation to the path integral
d 0 0 d 0 0
(dtaz az) (z,27) =0 (dt@z’* az*) (z,27) =0

yields the differential equation

i2(p,t) = B(p,t) — alp,t)z(p,t) — 5" (p,1)2(p, 1)’ ()

where we defined

2

 bm 1 |2(q. )
a(p,t) = o cos 20 + V2G N, + \/ﬁGp/dq(l cosUpq) (1 @)

and
2

Bp,t) = %62% sin 260 + \/iGp/dq(l — cosUpq) (%) .
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Defining
Y (p, 1)
2(p,t) = ,
)
with the auxiliary condition [¢.]? + 1.2 = 1, Eq. (5) reduces to
ZQ e \ _1( A4+ D—Acos26 D, + Asin 26 Ye (6)
Ot \ e ) 2 D,e+ Asin20 —A— D+ Acos26 o
where )
N A=V2GEN,,
2p

D =+2Gr / dq(1 — cosVpq) [(|te(a,t)]* = [¥e(q, t)?)]

Doy = 2/2Gw / dq(1 — cosVpg) (e (q, )02 (,1))

In the stationary point approximation to the full quantum mechanical problem, the test
neutrino interacts with an "average field” representing the effect of all the other neutrinos.
This approximation is analogous to the random phase approximation (RPA), widely used in
many-body physics. In the RPA one can approximate product of two commuting arbitrary
operators @1 and @2 as

0105 ~ O1(£]02[€) + (€]011€)O2 — (£]011£)(€]O26),
provided that o . A
(£1010:[€) = (€|O1[€)(€]O2[€)- (7)

This approximation reduces H,, to a one-body Hamiltonian:

2298 [y Ry ()0 + 34 @) + 3000 ).

The pre-exponential determinant obtained in the stationary phase approximation to the path
integral is rather complicated and an explicit evaluation is not yet available in the literature.
For simplicity in the discussion above we omitted antineutrinos. Antineutrinos can be included
by introducing a second set of SU(2) algebras [18]. Similarly incorporating three flavors requires
introduction of SU(3) algebras [33]. Both extensions are straightforward, but tedious.

Introducing the polarization vectors

Py(q) = Te(Ji(q)p) (8)

Hlll/ ~

with the density matrix
pee p€$ 1
= =—(Ph+P-o
one can show that, in RPA and including antineutrinos, the evolution equation (6) takes the
commonly-used forms

m? _
0P, = {+%(szex — c0s202) + V2 Gy [Nz + /dq(l — o8 ¥pg) (Pg — Pq)] } <P,

and
= m? R ) = =
o0,P, = —g(sm 20% — c0s202) + V2Gr |Nez + [ dg(1 —costyy) (Pq—Pg)| ¢ x Pp.
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3 Invariants of the neutrino-neutrino interaction Hamil-
tonian

We consider the limit where the neutrino-neutrino interactions dominate and neglect the inter-
actions with the background electrons and positrons. The Hamiltonian then becomes

Z QEE \/_VGF (1= cosVpq) Jp - Jq.

p P:a

We further limit this discussion to the so-called single-angle approximation where all the ¢ are

ﬁVGF, T = put, and wp, = %%, the Hamiltonian takes the

H=> w,B-J,+J-J. (9)
p

This Hamiltonian of Eq. (9) preserves the length of each spin

the same. Defining u = (1 — cos)
form

a -

=T, [ﬁ¢4:o,
as well as the total spin component in the direction of the ”external magnetic field”, B
Co=B-T, [ﬁ,@o}zo. (10)

It is possible to show that [25] the collective neutrino Hamiltonian of Eq. (9) has the following
constants of motion:

(11)

The individual neutrino spin-length discussed before in an independent invariant. However
Z h The Hamiltonian itself is also a linear combination of these invariants.

=Y wphy + YL,
p p

The maximal value of the neutrino flavor isospin quantum number is J,,., = N/2, where N
is total number of neutrinos. For example a state with all electron neutrinos is |ve ve ve ...) =
Jmax  Jmax)f. It is also easy to show that matter and flavor bases are connected with the
unitary transformation of Eq. (3): |Jax nm)f = Ut Jor Jws)m. One has |Jooe Josdm =
[, ai(p, $) 10) and [Jnax —Jma)m = 1, aQ(p, 5) |0), corresponding to the energies E(y 5 . ) =
- Z FWp + Jimax (Jumax + 1) and E_; = Zp FWp + Jimax (Jmax + 1), Tespectively. Energy
elgenvalues can be obtained by introducing the raising operator [25]

1 . . .
OF(¢) == Z - ((3052 0J;t + sin 29‘]1? — sin? GJE) .

Applying the operator to the state |J — J),, yields a term proportional to Q% (£)|J — J),, and
an additional term. Setting the coefficient of this latter term to zero gives the Bethe ansatz
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equation > — _—j” = —1 that needs to be satisfied if QT (£)|J — J),, is an eigenstate. The
most general elgenstate is

11,82, &s) = Q+(§1)Q+(€2) < Q+(§,§)|J —Dm

which corresponds to the eigenvalue

E(£17£27"~7£n E( J) — Zfa 2J—I€+1)

provided that the following Bethe ansatz equations are satisfied:

St Y e

» a
(57500

—

Using the polarization vector, Py, s = 2<fp,s>, of Eq. (8) one can write the Hamiltonian of
Eq. (9) as
~ H = pr P-J. (12)

This Hamiltonian yields the Heisenberg equations of motion for the operators J_;,:

d - Lo T
EJP = —i[Jp, H*™*] = (wp B + P) X J,. (13)
Applying the RPA consistency conditions of Eq. (7) to Eq. (13) one obtains the equations of
motion in the RPA: J

Eﬁp = (wp,B+ P) x P,.

Note that this is the single-angle limit of Eq. (9) only with neutrinos. It turns out that
expectation value of the invariants, Eq. (11), of the exact many-body Hamiltonian

—

. - B,.P
=2h\V=B-P E b 14
< p> p + wp o wq 9 ( )
a(#p)
is an invariant of the RPA Hamiltonian:

d
—1I,=0.
dr?

Introduction of antineutrinos is again straightforward utilizing a second SU(2) algebra (denoted
below with a tilde over the appropriate quantity). The conserved quantities for the single-angle
Hamiltonian with both neutrinos and antineutrinos

are
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for each neutrino energy mode p and
hy= B, +2 M+22M
a(#p)

or each antineutrino energy mode. In the RPA these take the form

e R T
and L -
Cei N B P 5 Py P5 - Py
I, = 2(h;) = B P+q(§5) P +2q:wﬁ_wq,
respectively.

Recently a lot of attention was paid to the spectral splitting (or spectral swapping) phe-
nomenon [21, 34, 35, 36, 37]. To explore the origin of this phenomenon we note that the
expectation value of the invariant in Eq. (10) which can be written in terms of the expectation
value of the invariants in Eq. (14),

> I,=B-P, (15)

is not conserved by the RPA Hamiltonian, Eq. (12). Its conservation needs to be enforced using
a Lagrange multiplier. Since Zp I, is proportional to J°, one needs to diagonalize the quantity

HEPA 4, J0 = Z(wc—wp)jg—i-ﬁ'j
p
_ it 707)
= D 22U,
P,s

where the transforming operator is parameterized as
U = e zpd} eXp In(1+|zp|%)J) PR DN (16)

with
z, = e tan 6,

_ 0
cos b, = \/% (1—1—%).
P

This operator transforms matter-basis creation and annihilation operators into quasi-particle
creation and annihilation operators:

and

al(pvs) 0/Ta1(
az(p,s) = U'fag(

,s)U" = cosB, ai(p,s) — e sinb, az(p, s)
s)U’

p
p,s)U" = e " sin 0, a1(p, s) + cosb, as(p, s)
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so that we obtain a diagonal Hamiltonian:
H™YA 4w, J° = Z Ap (a{ (p,s)on(p, s) — o (p, s)aa(p, s)) :
p,s

Let us assume that initially (lim 4 — o) there are more v.’s and all neutrinos are in flavor
eigenstates. We then have

. ) 1 PO
lim cos 0, = lim 3 1+ ﬁ cos20 | = cosb,

i.e., the diagonalizing transformation of Eq. (16) reduces into the neutrino mixing transforma-
tion of Eq. (3) and the total Hamiltonian of Eq. (16) is diagonalized by the flavor eigenstates:
a1 (p,s) = Ulay(p, s)U = ac(p, s).

After neutrinos propagate to a region with very low neutrino density (1 — 0) one gets
1 We — W 1
cosb,=4/= 1+ — L) = Wp < We
2 |we — wp 0 wp>we

_ - a1(p,s) wp < we
al(p>5) U al(p,s)U = { _a2(p73) wy > we

yielding

i.e. neutrinos with w, < w. and wy, > w. evolve into different mass eigenstates. In Ref. [21] it
was shown that such an evolution leads to spectral splits.

4  Concluding Remarks

Neutrino propagation through the dense media in the core-collapse supernovae probes many
interesting collective effects. Because of the neutrino-neutrino interactions, this many-body sys-
tem is intrinsically non-linear, it can be linearized only in certain cases [38]. We examined this
many-neutrino system both from the exact many-body perspective and from the point of view
of an effective one-body description formulated with the application of the RPA method. To
achieve this goal we exploited mathematical similarities between the neutrino-neutrino interac-
tion Hamiltonian and the BCS pairing Hamiltonian. (Indeed, the N-mode collective oscillations
of the neutrinos are related to the m-spin solutions of the BCS model [39]). In the limit of
the single angle approximation, both the many-body and the RPA pictures possess many con-
stants of motion manifesting the existence of associated dynamical symmetries in the system.
Judicious use of these invariants could certainly help numerical calculations [40].

We treated the two-flavor neutrino-neutrino interaction in the single-angle approximation,
and provided an interpretation of the critical energy in the spectral swap/split phenomenon as
the Lagrange multiplier of the number conservation constraint. Recent numerical work with
three flavors in the multi-angle approximation uncovers significant differences between single-
and multi-angle formulations [41]. In particular, multi-angle formulation is found to reduce the
adiabaticity of flavor evolution in the normal neutrino mass hierarchy, resulting in lower swap
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energies. Thus it seems that single-angle approximation seems to be sufficient in some cases,
but inadequate in other situations.

Other questions remain regarding the many-body behavior of the neutrino system. For
example, in the calculations so far neutrinos are assumed to be emitted half-isotropically (only
outward-moving modes are occupied with backward-moving modes being empty). However,
recent realistic supernova simulations suggest that neutrino angular distributions are not half-
isotropic [42]. Flavor-dependent angular distributions may lead to multi-angle instabilities
[43, 44]. Future work could uncover even more interesting features of this many-neutrino system.
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