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We present an overview of neutrino-nucleus scattering at low energies and highlight the

aspects of the study of these interactions important for supernova physics.

1 Introduction

Neutrinos are important for a type II supernova explosion in several ways. On one hand, neu-
trino interactions and the related energy transfers play a crucial role in the explosion dynamics
and nucleosynthesis. On the other hand, the terrestrial detection of supernova neutrinos can
provide a broad variety of information [1] about the neutrinos and their interactions, and about
the supernova process itself. The arrival times of the neutrinos are related to their mass and
can moreover hint at the fate of the star. Several reactions provide directional information, im-
portant for optical telescopes awaiting the photons in the wake of the supernova neutrino flux.
The energy of the neutrinos can be inferred from the energy of the decay products. It indicates
the decoupling site of the neutrinos and the temperature there. As mu and tau supernova-
neutrinos do not have enough energy to produce a massive lepton in a charged-current reaction,
the flavor of the arriving neutrinos can be inferred from the frequency differences between the
occurrence of neutral and charge-exchange processes. Whether a neutrino or an antineutrino
entered the detector can be determined by looking at the charge of the outgoing lepton for
electron (anti)neutrinos or by examining the spin of the outgoing nucleon in neutral-current
nucleon knockout off nuclei. When the signal in the detector is accurately resolved, the observed
neutrino energies and flavors can help to disentangle the mixing scheme induced by oscillations
[2, 3].

Nuclei have relatively large cross sections for neutrino reactions and are energy-sensitive in
the range of interest, several particle-emission thresholds opening up with increasing incoming
neutrino energies. This makes nuclear targets important as detecting material. Galactic super-
nova neutrinos could be detected by existing and proposed supernova neutrino detectors such
as SNO [4], SuperKamiokande [5], KamLAND [1], LVD [6], MiniBooNe [7], OMNIS [8], LAND
[9]. Favored detection nuclei are 12C, 16O, 56Fe, 208Pb, and deuterium. However, the signal in
the detector can only be interpreted as well as the relevant neutrino-nucleus cross sections are
understood. For most nuclei very little experimental neutrino data exists in the relevant energy
region. This is due to the very small cross sections for weak interaction processes, and an ad-
ditional limitation is caused by the fact that monochromatic neutrino beams are not available
[10, 11]. This has as a consequence that for most applications one has to rely on theoretical
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predictions, with their related uncertainties and model dependencies.

2 Modeling neutrino-nucleus interactions at low energies

The study of the atomic nucleus faces particular problems : generally, the atomic nucleus is a
mesoscopic system, on the one hand containing too much particles to allow few-body techniques
to be effective and on the other hand containing too few nucleons to enable a statistical approach
of the problem. In the tens-of-MeV energy range important for supernova neutrinos, cross
sections are very sensitive to nuclear structure effects.

The main methods to study neutrino scattering off nuclei at supernova-neutrino energies
are the Shell Model (SM) and the Random Phase Approximation (RPA). In the former, the
description of the nucleus is based on a full diagonalization of a effective interaction in a limited
model space. In recent years, the shell model has been used successfully to study various weak
interactions of interest to nuclear astrophysics [12]. The main disadvantage of the shell model
approach is the dimension of the matrices to be diagonalized, rapidly growing with increasing
model sizes.

Confronted with this drawback, a number of approximations has been designed, focusing on
various aspect of the problem. Next to the Hartree-Fock approximation, considering only single-
particle properties of the problem, more elaborate techniques as e.g. the RPA were developed.
Contrary to mean-field descriptions were a nucleon experiences the presence of the others only
through the mean-field generated by their mutual interactions, the random phase approximation
allows correlations to be present even in the ground state of the nuclear system and additionally
allows the particles to interact by means of the residual two-body force. The random phase
approximation goes one step beyond this zeroth-order mean-field approach and describes a
nuclear state as the coherent superposition of particle-hole contributions.

|ΨRPA〉 =
∑

c

{
X(Ψ,C)

∣∣ph−1
〉
− Y(Ψ,C)

∣∣hp−1
〉 }

. (1)

The summation index C stands for all quantum numbers defining a reaction channel unam-
biguously :

C = {nh, lh, jh,mh, εh; lp, jp,mp, τz}, (2)

where the indices p and h indicate whether the considered quantum numbers relate to the par-
ticle or the hole state, εh denotes the binding-energy of the hole state and τz defines the isospin
character of the particle-hole pair. General excited states are obtained as linear combinations
of these particle-hole configurations. As the RPA approach describes nuclear excitations as the
coherent superposition of individual particle-hole states out of a correlated ground state, this
approach allows to account for some of the collectivity present in the nucleus. In standard RPA
calculations this leads to a discrete spectrum, with several variations in the approach [13, 14, 15]
in use.

In this contribution, the cross section results are illustrated using a Continuum Random
Phase Approximation (CRPA), based on a Green’s function approach [16, 17, 18]. The unper-
turbed wave-functions are generated using either a Woods-Saxon potential or a HF-calculation
using a Skyrme force. The latter approach makes self-consistent HF-RPA calculations possible.

The differential cross-section for scattering of an incoming neutrino with energy εi is given
by
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∣∣∣Ĵ el

J (κ)
∣∣∣
∣∣∣ Ji

〉∗)]
,

(5)

where M̂J and L̂J are the Coulomb and longitudinal multipole operators, Ĵmag
J and Ĵ el

J the
transverse multipole operators. θ is the scattering angle of the lepton. For each multipole
transition Jπ only one part -vector or axial vector- of an operator is contributing. From the
expression (3) it is clear that J=0 transitions are suppressed due to the lack of a transverse
contribution in these channels. Still, neutrinos are able to excite 0− states in nuclei, while
electrons cannot. The second and third part of the expression show that there is interference
between the Coulomb and the longitudinal (CL) terms and between both transverse contribu-
tions, but not between transverse and CL terms. The only difference between neutrino and
antineutrino cross-sections is in the opposite sign of the transverse interference part. From the
angular dependence of the kinematic factors, it is clear that for backwards θ = π scattering
only transverse terms contribute, while for θ = 0 CL-contributions dominate.

For charged current neutrino scattering reactions, the outgoing particle is a charged lepton.
In this case, the outgoing particle has to be described by the scattering solutions in the Coulomb
potential generated by the final nucleus. For the applications considered here, this can be done
in an effective way introducing the Fermi function. The cross-section is then multiplied by the
square of the ratio between the correct scattering solution and a plane wave for a point charge
Z’, evaluated at the origin.

For many applications, the direction of the outgoing lepton is irrelevant and the differential
cross-section has to be integrated over the scattering angle Ω(θ, φ). Considering a process where
the incoming neutrino energies are distributed according to a spectrum, the cross-section (3)
has to be folded with this energy distribution. The total scattering cross-section is obtained by
performing an integration of (3) over the excitation energies ω and summing over the different
multipole contributions.

3 Cross sections

Neutrino scattering potentially constitutes a rich source of information on nuclear structure and
weak interaction characteristics. But notwithstanding the experimental efforts, the extraction
of information out of scattering reactions is very difficult, due to the very small interaction
cross-sections. The importance of neutrinos in a variety of astrophysical situations therefore
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Figure 1: Cross-section for the neutral current reaction 16O + ν50 MeV → 16O∗ + ν′ (full line)
and its dominant multipole contributions. Jπ = 1− (dashed line), Jπ = 1+ (dashed-dotted)
and Jπ = 2− (dotted line). The total cross-section includes multipoles up to J=4. The single-
particle wave-functions and energies were obtained with a Hartree-Fock calculation, as residual
interaction the SkE2 parameterization was used.

represents an important additional motivation for the study of neutrino-nucleus scattering re-
actions.

In this section, the main characteristics of neutrino-nucleus scattering at supernova-neutrino
energies are discussed using the example of neutral-current scattering of 50 MeV neutrinos off
16O.

Figure 1 shows the differential cross-section for this reaction as a function of the excitation
energy ω of the nucleus, and the most important multipole contributions. The differential
neutrino scattering cross-sections are of the order of 10−42 cm2 per MeV. The figure clearly
illustrates that at energies below 20 MeV, the cross-section spectrum is sharply peaked. These
peaks are related to excitations with a strong single-particle character. The resonances are
however very narrow and therefore do not absorb all transition strength. At excitation energies
between 20 and 25 MeV, the broad resonance structure of the giant dipole resonance shows up.
For excitation energies above approximately 30 MeV the cross-section decreases almost purely
quadratically as a function of the excitation energy of the nuclear system. This agrees with
the energy dependence of equation (3) which shows the cross-section to be proportional to the
square of the outgoing lepton energy dσ

dω
∼ (εf )2. This effect furthermore results in the smooth

and soft broadening of the resonances for higher values of the energy of the lepton projectile.

In the calculation, multipoles up to J=4 were taken into account. Contributions of higher
order multipole excitations were found to be very small at the considered energies. The J=5
transitions are suppressed by almost 5 orders of magnitude and as a consequence have negligible
influence on the total cross-section. The smooth behavior of these contributions furthermore
assures that the shape of the resonance structure in the excitation spectrum is not affected by
the higher order multipole transitions.

The J=1 excitations are prominent, with a clear dominance of the J=1− electric dipole
transition in the giant resonance region. Next to higher order multipole transitions J=3 and
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Figure 2: Comparison between the vector (dashed) and the axial vector (dotted line) contri-
bution to the reaction 16O(ν, ν′)16O∗. The total differential cross-section is shown by the full
curve.

J=4, also J=0 excitations are suppressed. This is due to the fact that only Coulomb and
longitudinal terms contribute to these channels. But still, some clear 0− resonances show up in
the differential cross-sections. In general, negative parity transitions are clearly dominating the
positive parity contributions. For higher excitation energies, the relative importance of higher
order multipoles increases.

Figure 2 carries out a comparison between the contribution of the axial and the axial vector
part of the hadronic current to the total cross-section. The axial vector current is clearly more
sensitive to the weak neutrino probes. The vector contribution is suppressed by more than
one order of magnitude. The splitting of the cross-section in a vector and an axial vector part
excludes the interference contribution. This explains the discrepancy between the sum of both
curves in figure 2 and the total cross-section.

Due to the fact that the axial vector current is completely isovector, isovector excitations
will dominate isoscalar ones, as figure 4 indeed illustrates. The reason for the large suppression
of the isoscalar excitations is twofold : not only is the axial vector current not contributing to
isoscalar transitions, but due to the sin2 θW -factor the isoscalar form factors are considerably
smaller than the vector ones as well. A further consequence of this isovector dominance is the
large isovector contribution to the resonance at 23.6 MeV, a dominance that is clearly related
to the axial vector character of this excitation (figure 2). The figure furthermore shows that,
due to the repulsive character of the interaction in the isovector channels, isovector excitations
are pushed towards higher energies compared to isoscalar states.

According to equation (3) it is the interference contribution that is responsible for the
difference in the nuclear response to neutrino and antineutrino perturbations. The sign of
the interference term determines which cross-section will be dominant. Figure 3 illustrates
that generally neutrino cross-sections are slightly larger than antineutrino cross-sections. Only
round 23 MeV, the interference term changes sign and antineutrino excitations become more
important.

5

LOW-ENERGY NEUTRINO-NUCLEUS CROSS SECTIONS

HAνSE 2011 117



0.01

0.1

1

10

15 20 25 30 35

dσ
/dω

 (1
0-42

 cm
2  M

eV
-1 )

ω (MeV)

Figure 3: Cross-section for neutral current neutrino (full line) and antineutrino (dashed) scat-
tering reactions off oxygen 16.
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Figure 4: Comparison between the isovector (dashed line) and the isoscalar (dotted) contri-
bution to the reaction 16O(ν, ν′)16O∗. The isovector curve almost coincides with the total
cross-section.
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Figure 5: Differential cross-section for the neutral current reaction 16O + νFD → 16O∗ + ν′,
averaged over neutrinos and antineutrinos and over a Fermi-Dirac distribution with temperature
T and vanishing chemical potential. T=12 MeV (full line) ; T=10 MeV (dashed) ; T=8 MeV
(shortdashed) ; T=6 MeV (dotted) and T=4 MeV (dashed-dotted).

4 Influence of the energy distribution

In order to obtain information about the interactions of supernova neutrinos, the cross sections
have to be folded with the appropriate energy spectrum. Figure 6 shows that the folded cross
section is strongly dependent on the temperature or average energy of the distribution. Tradi-
tionally, supernova-neutrino energy-distributions were parametrized using Fermi-Dirac distri-
butions. The spectra are however not purely thermal, as the decoupling sites of the neutrinos
are influenced by their flavor and energy, leading to the use of “effective temperatures” and “ef-
fective chemical potentials” in these distributions. Recent calculations showed that descriptions
of a supernova neutrino spectrum are provided by a power-law distribution [19]:

nSN [〈ε〉,α](ε) =

(
ε

〈ε〉

)α

e
−(α+1) ε

〈ε〉 , (6)

where 〈ε〉 and α represent the average energy and the width of the spectrum respectively. The
average neutrino energy 〈ε〉 is related to the temperature at the decoupling site, and the effect of
α is equivalent to that of the introduction of the effective chemical potential in the Fermi-Dirac
distribution. Neutrino-nucleus reaction cross sections depend on the square of the incoming
energy, thus rising very fast with neutrino energies. Hence, the folded cross sections reach their
maximum at much higher energy values than the supernova-neutrino energy-spectrum does,
as illustrated in figure 6. Typically even neutrinos with energies more than twice the average
energy of the distribution make sizable contributions to the folded cross section, and integrated
cross sections only converge at energies above 60 MeV [20]. This makes the high-energy tail of
the spectra very important for the determination of the nuclear response.

7

LOW-ENERGY NEUTRINO-NUCLEUS CROSS SECTIONS

HAνSE 2011 119



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

20 30 40 50 60 70
εi (MeV)

ω = 16 MeV
w = .7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 30 40 50 60 70
εi (MeV)

ω = 16 MeV
w = .9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20 30 40 50 60 70
εi (MeV)

ω = 12 MeV
w = .7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

20 30 40 50 60 70
εi (MeV)

ω = 12 MeV
w = .9

Figure 6: Influence of the supernova-neutrino energy-distribution on the folded cross section for
different spectra and excitation energies of the nucleus: energy spectrum (dotted), cross section
(dashed), folded cross section (full line).

5 Neutrino interactions at a low-energy beta-beam facil-

ity

Beta beams, which are neutrino beams produced by the beta decay of nuclei that have been
accelerated to high gamma factor, were original proposed for high energy applications, such as
the measurement of the third neutrino mixing angle θ13 [21]. Volpe [22, 23, 24] suggested that
a beta beam run at lower gamma factor, would be useful for neutrino measurements in the tens
of MeV range. The flexibility these beta-beam facilities offer [25], combined with the fact that
beta-beam neutrino energies overlap with supernova-neutrino energies, allow one to construct
’synthetic’ spectra that approximate an incoming supernova-neutrino energy-distribution. It
can be shown that fitting ’synthetic’ spectra, constructed by taking linear combinations of
beta-beam spectra, to the original supernova-neutrino spectra reproduces the folded differential
cross sections very accurately [26, 27]. Comparing the response in a terrestrial detector to these
synthetic responses provides a direct way to determine the main parameters of the supernova-
neutrino energy-distribution. Using these constructed spectra we are able to reproduce total
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Figure 7: Comparison between differential cross sections for neutral-current scattering on 16O,
folded with a power-law supernova-neutrino spectrum (full line) and synthetic spectra with 3
(dashed line) and 5 components (dotted line) for different energy distributions : 〈ε〉=14, α=3
(a), 〈ε〉=22, α=3 (b), 〈ε〉=18, α=2 (c), and 〈ε〉=18, α=4 (d).

and differential folded supernova-neutrino cross-sections very accurately, as Fig.7 illustrates.

References

[1] P. Vogel, Prog. Part. Nucl. Phys. 48, 29 (2002).

[2] G. M. Fuller, W. C. Haxton and G. C. McLaughlin, Phys. Rev. D 59, 085005 (1999).

[3] J. Engel, G. C. McLaughlin and C. Volpe, Phys. Rev. D 67, 013005 (2003).

[4] C.J. Clarence, the SNO Collaboration, Nucl. Phys. Proc. Suppl. 100, 326 (2001).

[5] Y. Oyama et al., Phys. Rev. Lett. 56, 2604 (1987).

[6] M. Aglietta, P. Antonioli, G. Bari, C. Castagnoli et al., Nucl. Phys. Proc. Suppl. 138, 115 (2005).

[7] M.K. Sharp, J.F. Beacom, J.A. Formaggio, Phys. Rev. D 66, 013012 (2002).

[8] R.N. Boyd and A.St.J. Murphy, Nucl. Phys. A688, 386c (2001).

[9] C.K. Hargrove et al., Astroparticle Physics 5, 183 (1996).

9

LOW-ENERGY NEUTRINO-NUCLEUS CROSS SECTIONS

HAνSE 2011 121



[10] B.E. Bodmann et al., Phys. Lett. B 332, 251 (1994).

[11] http://www.phy.ornl.gov/nusns

[12] K. Langanke, G. Mart́ınez-Pinedo, B. Müller, H.-Th. Janka et al, Phys. Rev. Lett 100, 011101 (2008).

[13] E. Kolbe, K. Langanke, S. Krewald and F.K. Thielemann, Nucl. PhysA540, 599 (1992).
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