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As neutrinos propagate from the neutrinosphere through the mantle of a core-collapse

supernova they will pass through regions of turbulence. The turbulence leads to stochastic

neutrino flavor mixing thus leaving fingerprints in the Galactic supernova neutrino burst

signal. In this talk I explore the effect of turbulence upon the neutrinos focusing upon the

case of large amplitudes and demonstrate that the ensemble of S matrices that describe

the neutrino evolution in this limit is Dyson’s Circular Ensemble.

1 The signal from the next Galactic supernova

The progress in the field of supernova neutrino over the past decade has been impressive with
a constant procession of important discoveries. For a review we refere the reader to Duan &
Kneller [1]. We have discovered that the neutrino burst from the next supernova in our Galaxy
is dynamic with information about both the neutrino and the supernova embedded within it.
Decoding that signal will be a formidable challenge because of the many different processes
which alter the neutrino spectra during their voyage to Earth: neutrino self interactions over
the first 1000 km or so from the neutrinosphere, the effect of matter - the Mikheev-Smirnov-
Wolfenstein (MSW) effect - with the added complication of turbulence, de-coherence as the
neutrino propagates to Earth, and then Earth matter effects if the SN is ‘shadowed’ at the
detector. The last two effects are well understood and are simple to account for; the first item
on this list is a fascinating subject with a rich and evolving phenomenology and we refer the
reader to the contributions by Baha Balantekin, Amol Dighe, Alessadro Mirizzi and Raymond
Sawyer. The MSW effects too have been well studied and the expected signals of supernova
features such as the shockwave have been described. That leaves the effect of turbulence
(density fluctuations) which are not yet satisfactorily included in simulations of the expected
neutrino signal because, a) we have little idea of what the turbulence in the supernova may
look like, and b) we have no prescription for including turbulence in the signal. Having said
this, the general effect of turbulence is well-known: turbulence tends to equilibrate the spectra
of the different flavors. In the limit of total equilibration the spectra at Earth are a linear
combination of the spectra at the neutrinosphere and thus the features in the spectra which
are supposed to indicate unknown neutrino properties, neutrino phenomena such as collective
effects, and supernova diagnostics such as the shock wave, are removed. A better understanding
of turbulence effects upon supernova neutrinos and the implications for observables would be
very desirable. This talk summarizes the work from Kneller & Volpe [3] and Kneller [4] and
some more recent work which focused upon these problems.
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Figure 1: (color online) A normalized frequency histogram of 1012 calculations of P11 (top
panel) P22 (middle panel) and P33 (bottom panel) for E = 25 MeV neutrinos. The hierarchy
is normal, sin2(2θ13) = 4× 10−4 and C2

⋆ = 0.01.

2 Turbulence in supernova

In multi-dimensional hydrodynamical simulations we see turbulence generated by aspherical
flows through distorted shocks, convection, etc. For a description of the very interesting results
of these simulations we refer the reader to the contributions by Bernhard Mueller, Stephan
Bruenn, Thomas Janka and Christian Ott. In order to study the effect of this turbulence upon
the neutrinos we obviously first need to have at hand density profiles with turbulence in them.
Ideally we would gather such profiles from multi-dimensional hydrodynamical simulations but
at present they are all focused upon the inner regions of the star and early times in order to
discover the mechanism (or mechanisms) that leads to the explosion. But it is the outer regions,
from ∼ 1000 km to ∼ 107 km, where the MSW effect occurs and where, several seconds into the
signal, the shock wave will generate the turbulence that will most effect the neutrinos. Thus
we are forced to take density profiles from one-dimensional simulations which do extend to the
outer parts of the star and late times and insert turbulence into them. For this work we choose
to model the turbulence as a Gaussian random field F (r) with a rms amplitude C⋆ and we
shall adopt a Kolmogorov power spectrum. To mimic the turbulence seen in multi-d hydro
simulations we restrict the turbulence to the region between the forward and reverse shocks.

Ve(r) = (1 + F (r))〈Ve(r)〉 (1)

The one-dimensional density profile 〈Ve(r)〉 we use here is the t = 4.5 s snapshot of the Q =
3.36× 1051 erg model taken from Kneller, McLaughlin & Brockman [5].
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Figure 2: (color online) Normalized frequency distributions of the probabilities P11, P22 and
P33 of 1563 calculations. The hierarchy is normal, C2

⋆ = 0.3 and E = 60 MeV.

Now that we have our density profiles we have to run the neutrinos through them. The
ν state at r is related to the initial state through an operator S and the probability that an
initial state j is later detected as state i is given by the square amplitude of the appropriate
element of S i.e. P (νj → νi) ≡ Pij = |Sij |

2. The ideas and methods used to find S are
described in Kneller & McLaughlin [2, 6]. For all results in this paper we set the oscillation
frequencies and angles to δm2

12
= 8×10−5eV2, |δm2

23
| = 3×10−3eV2 and by sin2 2θ12 = 0.83 and

sin2 2θ23 = 1 [7]. The value of the unknown angle θ13 will be given when a specific value is used
in a calculation. These transition probabilities are not unique: each realization of the random
field will give a different set of Pij ’s so in order to study the overall effect one needs to generate
many many realizations and construct ensemble of S and the Pij ’s. From these ensembles one
then extracts the transition probabilities as the neutrino exits the turbulence and construct
histograms of the results. One such histogram is shown in Figure (1) for the case of relatively
small turbulence amplitudes of 10%. The figure indicates that for small amplitudes the final
state distributions are quasi two flavor: the transition probability P11 is always close to unity
while the two probabilities P22 and P33 are consistent with uniform. But as we increase the
amplitude of the turbulence the effect begins to change. For very large amplitudes we begin to
see three-flavor effects that occur because we break HL factorization. Breaking HL factorization
leads to a change in the distributions of the transition probabilities: the distributions begin to
transit to a triangular shape albeit with relic quasi-two flavor features in the example shown in
Figure (2).
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Figure 3: (color online) The distributions of the transition probabilities P11 (solid) and P12

(dashed) as a function of the number N of products of random 2 × 2 matrices. From bottom
to top the panels are for N = 1, N = 2, N = 10 and N = 100.

3 Products of random unitary matrices

The results shown in Figures (1) and (2) correspond to two cases of flavor depolarization:
one with 2 flavors and the other with 3. Depolarization means that there is no connection
between the initial and final states: all final states are equally likely and when this occurs
the ensemble of S matrices one has constructed is a realization of Dyson’s Circular Unitary
Ensemble CUE(Nf ) [8] where Nf is the number of flavors. From this ansatz one can also
show analytically [4] that the distribution of the set of probabilities P1j , P2j , ... for observing
final states ν1, ν2 etc. is uniform over a standard Nf -1 simplex and after integrating over
Nf -1 elements of the set one finds that the distribution f of a particular probability Pij is
f(Pij) = (Nf − 1) (1 − Pij)

Nf−2. The Circular Ensemble is also relevant to the distribution
of the product of N random non-circular matrices in the limit where N → ∞ which has a
natural association with S matrices because S-matrices can be factored. So we can think about
breaking the integration domain into N subdomains each with one MSW resonance. Each
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Figure 4: (color online) The distributions of the transition probabilities P11 (solid), P12 (dashed)
and P13 (dashdot) as a function of the number N of products of random 3× 3 matrices. From
bottom to top the panels are for N = 1, N = 10 and N = 100.

domain is described by a S-matrix that we could regard as a random matrix. Thus the S
matrix which describes the evolution through the entire turbulence region can be considered
as the product of N random Nf ×Nf matrices which individually are not necessarily from the
Circular Ensemble. An ensemble of the matrix product of N random, unitary matrix factors is
CUE(Nf ) as N →∞ for all distributions of the factors i.e. it is like the central limit theorem
for random variates. An example calculation of an ensemble formed as the the product of N

random 2× 2 matrices is shown in Figure (3). The lowest panel shows the distribution of each
matrix factor is diagonally dominant but as the number of products increases we end up with
uniform distributions. Figure (4) shows the case of the product of N random 3 × 3 matrices
and we see that as N becomes large we obtain triangular distributions.

4 Summary

The turbulence features very much depend upon the amplitude and the mixing parameters.
For small amplitudes: turbulence is quasi two flavor, appears only in the H resonant channel.
But for larger amplitudes turbulence breaks HL i.e. it is 3 flavor, and appears in non-resonant
channel. Supernova turbulence amplitudes of order ∼ 1−10% lead to two-flavor depolarization
with uniform distributions. If the amplitudes are of order & 10% or the turbulence extends
over a much greater distance than expected then we transit to three-flavor depolarization with
triangular distributions.
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